V.I. Pan’zhenskii∗ , A.O. Rastrepina∗∗
Penza State University, Penza, 440026 Russia
E-mail: ∗kaf-geom@yandex.ru, ∗∗n.rastrepina@mail.ru
Received October 30, 2019
Full text pdf
DOI: 10.26907/2541-7746.2020.1.77-90
For citation: Pan’zhenskii V.I., Rastrepina A.O. The left-invariant contact metric struc ture on the Sol manifold. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 1, pp. 77–90. doi: 10.26907/2541-7746.2020.1.77-90. (In Russian)
Abstract
Among the known eight-dimensional Thurston geometries, there is a geometry of the Sol manifold – a Lie group consisting of real special matrices. For a left-invariant Riemannian metric on the Sol manifold, the left shift group is a maximal simple transitive group of isometry. In this paper, we found all left-invariant differential 1-forms and proved that on the oriented Sol manifold there is only one left-invariant differential 1-form, such that this form and the left- invariant Riemannian metric together define the contact metric structure on the Sol manifold. We identified all left-invariant contact metric connections and distinguished flat connections among them. A completely non-holonomic contact distribution along with the restriction of a Riemannian metric to this distribution define the contact metric structure on the Sol manifold, and an orthogonal projection of the Levi-Chivita connection is a truncated connection. We obtained geodesic parameter equations of the truncated connection, which are the sub-geodesic equations, using a non-holonomic field of frames adapted to the contact metric structure. We revealed that these geodesics are a part of the geodesics of the flat contact metric connection.
Keywords: Sol manifold, contact metric structure, contact metric connection, sub-Riemannian geodesics
References
- Thurston W.P. The Geometry and Topology of Three-Manifold. Levy S. (Ed.). Princeton, Princeton Univ. Press, 1997. 328 p.
- Scott P. Geometrii na trekhmernykh mnogoobraziyakh [The Geometries of 3-Manifolds]. Arnol’d V.I. (Ed.). Moscow, Mir, 1986. 164 p. (In Russian)
- Sasaki S. On differentiable manifolds with certain structures which are closely related to almost contact structure, I. Tohoku Math. J. (2), 1960, vol. 12, no. 3, pp. 459–476. doi: 10.2748/tmj/1178244407.
- Blair D.E. Contact Manifolds in Riemannian Geometry. Berlin, New York, Springer, 1976. 148 p. doi: 10.1007/BFb0079307.
- Kirichenko V.F. Differentsial’no-geometricheskie struktury na mnogoobraziyakh [Differential-Geometric Structures on Manifolds]. Odessa, Pechatnyi Dom, 2013. 458 p. (In Russian)
- Pan’zhenskii V.I., Klimova T.R. The contact metric connection on the Heisenberg group. Russ. Math., 2018, vol. 62, no. 11, pp. 45–52. doi: 10.3103/S1066369X18110051.
- Agrachev A., Barilari D., Boscain U. Introduction to Riemannian and Sub-Riemannian Geometry. Trieste, SISSA, 2012. 179 p.
- Agrachev A.A. Topics in sub-Riemannian geometry. Russ. Math. Surv., 2016, vol. 71, no. 6, pp. 989–1019. doi: 10.1070/RM9744.
- Vershik A.M., Faddeev L.D. Lagrangian mechanics in invariant form. In: Problemy teoreticheskoy fiziki [Problems of Theoretical Physics]. Veselov M.G. et al. (Eds.). Leningrad, Izd. LGU, 1975, pp. 129–141. (In Russian)
- Vershik A.M., Gershkovich V.Ya. Nonholonomic dynamical systems. Geometry of distributions and variational problems. Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fundam. Napravleniya, 1987, vol. 16, pp. 5–85. (In Russian)
- Jano K., Bochner S. Krivizna i chisla Betti [Curvature and Betty Numbers]. Moscow, Izd. Inostr. Lit., 1957. 152 p. (In Russian)
- Norden A.P. Prostranstva affinnoi svyaznosti [Affine Connection Spaces]. Moscow, Nauka, 1976. 432 p. (In Russian)
- Gordeeva I.A., Pan’zhenskii V.I., Stepanov S.E. Riemann–Cartan manifolds. J. Math. Sci., 2010, vol. 169, no. 3, pp. 342–361. doi: 10.1007/s10958-010-0052-5.
- Gromoll D., Klingenberg W., Meyer W. Rimanova geometriya v tselom [Riemannian Geometry as a Whole]. Toponogov V.A. (Ed.). Moscow, Mir, 1971. 343 p. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.