V.I. Pan’zhenskii , A.O. Rastrepina∗∗

Penza State University, Penza, 440026 Russia

E-mail: kaf-geom@yandex.ru, ∗∗n.rastrepina@mail.ru

Received October 30, 2019

Full text pdf

DOI: 10.26907/2541-7746.2020.1.77-90

For citation: Pan’zhenskii V.I., Rastrepina A.O. The left-invariant contact metric struc ture on the Sol manifold. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 1, pp. 77–90. doi: 10.26907/2541-7746.2020.1.77-90. (In Russian)

Abstract

Among the known eight-dimensional Thurston geometries, there is a geometry of the Sol manifold – a Lie group consisting of real special matrices. For a left-invariant Riemannian metric on the Sol manifold, the left shift group is a maximal simple transitive group of isometry. In this paper, we found all left-invariant differential 1-forms and proved that on the oriented Sol manifold there is only one left-invariant differential 1-form, such that this form and the left- invariant Riemannian metric together define the contact metric structure on the Sol manifold. We identified all left-invariant contact metric connections and distinguished flat connections among them. A completely non-holonomic contact distribution along with the restriction of a Riemannian metric to this distribution define the contact metric structure on the Sol manifold, and an orthogonal projection of the Levi-Chivita connection is a truncated connection. We obtained geodesic parameter equations of the truncated connection, which are the sub-geodesic equations, using a non-holonomic field of frames adapted to the contact metric structure. We revealed that these geodesics are a part of the geodesics of the flat contact metric connection.

Keywords: Sol manifold, contact metric structure, contact metric connection, sub-Riemannian geodesics

References

  1. Thurston W.P. The Geometry and Topology of Three-Manifold. Levy S. (Ed.). Princeton, Princeton Univ. Press, 1997. 328 p.
  2. Scott P. Geometrii na trekhmernykh mnogoobraziyakh [The Geometries of 3-Manifolds]. Arnol’d V.I. (Ed.). Moscow, Mir, 1986. 164 p. (In Russian)
  3. Sasaki S. On differentiable manifolds with certain structures which are closely related to almost contact structure, I. Tohoku Math. J. (2), 1960, vol. 12, no. 3, pp. 459–476. doi: 10.2748/tmj/1178244407.
  4. Blair D.E. Contact Manifolds in Riemannian Geometry. Berlin, New York, Springer, 1976. 148 p. doi: 10.1007/BFb0079307.
  5. Kirichenko V.F. Differentsial’no-geometricheskie struktury na mnogoobraziyakh [Differential-Geometric Structures on Manifolds]. Odessa, Pechatnyi Dom, 2013. 458 p. (In Russian)
  6. Pan’zhenskii V.I., Klimova T.R. The contact metric connection on the Heisenberg group. Russ. Math., 2018, vol. 62, no. 11, pp. 45–52. doi: 10.3103/S1066369X18110051.
  7. Agrachev A., Barilari D., Boscain U. Introduction to Riemannian and Sub-Riemannian Geometry. Trieste, SISSA, 2012. 179 p.
  8. Agrachev A.A. Topics in sub-Riemannian geometry. Russ. Math. Surv., 2016, vol. 71, no. 6, pp. 989–1019. doi: 10.1070/RM9744.
  9. Vershik A.M., Faddeev L.D. Lagrangian mechanics in invariant form. In: Problemy teoreticheskoy fiziki [Problems of Theoretical Physics]. Veselov M.G. et al. (Eds.). Leningrad, Izd. LGU, 1975, pp. 129–141. (In Russian)
  10. Vershik A.M., Gershkovich V.Ya. Nonholonomic dynamical systems. Geometry of distributions and variational problems. Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fundam. Napravleniya, 1987, vol. 16, pp. 5–85. (In Russian)
  11. Jano K., Bochner S. Krivizna i chisla Betti [Curvature and Betty Numbers]. Moscow, Izd. Inostr. Lit., 1957. 152 p. (In Russian)
  12. Norden A.P. Prostranstva affinnoi svyaznosti [Affine Connection Spaces]. Moscow, Nauka, 1976. 432 p. (In Russian)
  13. Gordeeva I.A.,     Pan’zhenskii V.I.,    Stepanov S.E. Riemann–Cartan manifolds. J. Math. Sci., 2010, vol. 169, no. 3, pp. 342–361. doi: 10.1007/s10958-010-0052-5.
  14. Gromoll D., Klingenberg W., Meyer W. Rimanova geometriya v tselom [Riemannian Geometry as a Whole]. Toponogov V.A. (Ed.). Moscow, Mir, 1971. 343 p. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.