N.V. Burmasheva∗ , E.Yu. Prosviryakov∗∗
Institute of Engineering Science, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620049 Russia
Ural Federal University, Yekaterinburg, 620002 Russia
Email: ∗nat_burm@mail.ru, ∗∗evgen_pros@mail.ru
Received April 19, 2022
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2541-7746.2022.4.285-301
For citation: Burmasheva N.V., Prosviryakov E.Yu. Exact solution of the Couette–Poiseuille type for steady concentration flows. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2022, vol. 164, no. 4, pp. 285–301. doi: 10.26907/2541-7746.2022.4.285-301. (In Russian)
Abstract
This article presents a new exact solution for predicting the properties of the velocity field, pressure, and impurity distribution in steady shear flows of viscous incompressible fluids in an extended horizontal layer. The solutal convection was described using a mathematical model based on the Oberbeck–Boussinesq equations with a linear dependence of density on concentration. It was assumed that the layer at one of its boundaries (the lower one) is impermeable to the substance (impurity) dissolved in the fluid so that the fluid-sticking effect applies to it. It was demonstrated that the flow is induced by an inhomogeneous distribution of impurities and pressure at the upper boundary of the layer. A uniform distribution of velocities is set at the upper boundary. The obtained solution belongs to the Ostroumov–Birikh and Lin–Sidorov–Aristov classes. The velocity field was described by the two-dimensional Couette profile, i.e., both velocity components depend on the vertical transverse coordinate. The concentration and pressure were described by linear forms relative to horizontal (longitudinal) coordinates, with coefficients depending on the third coordinate. The structure of the exact solution is such that the incompressibility equation is identically satisfied. Thus, an overdetermined, quadratically nonlinear partial differential system was resolved. After the substitution in the stationary system of the Oberbeck–Boussinesq equations supplemented by the equations of diffusion and incompressibility, the unknown functions that determine the hydrodynamic fields were found by integrating the system of ordinary differential equations. This system is of the 13th order and admits an exact polynomial solution that can be used to describe the occurrence of several counterflow zones and the nonmonotonic nature of the specific kinetic energy with up to two zeros. The obtained exact solutions illustrate the multiple stratifications of the shear stress, pressure, and concentration fields. Therefore, hydrodynamic fields have a complex topology defined by the dependence of velocities, pressure, and concentration on the transverse coordinate.
Keywords: solutal convection, exact solution, Couette–Poiseuille flow
References
- Birikh R.V., Mazunina E.S. Thermocapillary convection in a plane liquid layer with concentration heat sources. Fluid Dyn., 2009, vol. 44, no. 1, pp. 1–9. doi: 10.1134/S0015462809010013.
- Kolesnikov A.K., Yakushin V.I. Convective instability of a mixture with concentration heat sources. J. Eng. Phys., 1979, vol. 36, pp. 472–477. doi: 10.1007/BF00866975.
- Kolesnikov A.K., Yakushin V.I. Convection in mixtures with nonuniform heat release proportional to the density of an active component. Fluid Dyn., 1980, vol. 15, pp. 810– 816. doi: 10.1007/BF01096628.
- Birikh R.V., Rudakov R.N. Effect of the adsorption-desorption process intensity on solutal convection near a drop in a horizontal channel. Fluid. Dyn., 2011, vol. 46, no. 1, pp. 131– 137. doi: 10.1134/S0015462811010157.
- Birikh R.V., Mazunina E.S., Mizev A.I., Rudakov R.N. Solutal convection induced by submerged source of surface-active substance. Konvekt. Techeniya, 2009, no. 4, pp. 063–084. (In Russian)
- Birikh R.V., Denisova M.O., Kostarev K.G. The development of Marangoni convection induced by local addition of a surfactant. Fluid Dyn., 2011, vol. 46, no. 6, pp. 890–900. doi: 10.1134/S0015462811060068.
- Zuev A.L., Kostarev K.G. Certain peculiarities of the solutocapillary convection. Phys.– Usp., 2008, vol. 51, no. 10, pp. 1027–1045. doi: 10.1070/PU2008v051n10ABEH006566.
- Zuev A.L., Kostarev K.G. An experimental study of solutocapillary convection. Vestn. Permsk. Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, 2009, no. 4, pp. 4–15. (In Russian)
- Burmasheva N.V., Prosviryakov E.Yu. Exact solution for Couette-type steady convective concentration flows. J. Appl. Mech. Tech. Phys., 2021, vol. 62, no. 7, pp. 1199–1210. doi: 10.1134/S0021894421070051.
- Aristov S.N., Prosviryakov E.Yu., Spevak L.F. Nonstationary laminar thermal and solutal Marangoni convection of a viscous fluid. Vychisl. Mekh. Sploshnykh Sred, 2015, vol. 8, no. 4, pp. 445–456. (In Russian)
- Fedyushkin A.I. Effect of gravity on the mass transfer during calcium phosphates crystallization under thermostatic conditions. Preprint. Moscow, Inst. Probl. Mekh. im. A.Yu. Ishlinskogo Ross. Akad. Nauk, 2015. 27 p. (In Russian)
- Gadiyak G.V., Cheblakova E.A. Convection and heat transfer in fluid under hypogravitation allowing for thermo-capillary effects. Vychisl. Tekhnol., 1999, vol. 4, no. 5, pp. 10–23. (In Russian)
- Evstratova K.I., Kunina N.A., Malakhova E.E. Fizicheskaya i kolloidnaya khimiya [Physical and Colloid Chemistry]. Moscow, Vyssh. Shk., 1990. 487 p. (In Russian)
- Birikh R.V. Oscillatory modes of solutal convection and specific features of boundary conditions at the interfaces. Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2011, no. 4, pp. 647–649. (In Russian)
- Ostroumov G.A. Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi [Free Convection in Internal Problem Conditions]. Moscow, Gos. Izd. Tekh.-Teor. Lit., 1952. 256 p. (In Russian)
- Birikh R.V. Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys., 1966, vol. 7, pp. 43–44. doi: 10.1007/BF00914697.
- Birikh R.V., Pukhnachev V.V. An axial convective flow in a rotating tube with a longitudinal temperature gradient. Dokl. Phys., 2011, vol. 56, no. 1, pp. 47–52. doi: 10.1134/S1028335811010095.
- Aristov S.N., Shvarts K.G. Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti [Vortex Flows of Advective Nature in a Rotating Fluid Layer]. Perm, Permsk. Gos. Univ., 2006. 155 p. (In Russian)
- Birikh R.V., Pukhnachev V.V., Frolovskaya O.A. Convective flow in a horizontal channel with non-Newtonian surface rheology under time-dependent longitudinal temperature gradient. Fluid Dyn., 2015, vol. 50, no. 1, pp. 173–179. doi: 10.1134/S0015462815010172.
- Burmasheva N.V., Prosviryakov E.Yu. A large-scale layered stationary convection of an incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation. Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 2017, vol. 21, no. 1, pp. 180–196. doi: 10.14498/vsgtu1527. (In Russian)
- Burmasheva N.V., Prosviryakov E.Yu. A large-scale layered stationary convection of an incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and pressure field investigation. Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 2017, vol. 21, no. 4, pp. 736–751. doi: 10.14498/vsgtu1568. (In Russian)
- Burmasheva N.V., Prosviryakov E.Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation. Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 2019, vol. 23, no. 2, pp. 341–360. doi: 10.14498/vsgtu1670.
- Vlasova S.S., Prosviryakov E.Yu. Parabolic convective motion of a fluid cooled from below with the heat exchange at the free boundary. Russian Aeronaut., 2016, vol. 59, no. 4, pp. 82–87. doi: 10.3103/S1068799816040140.
- Goncharova O.N., Rezanova E.V. Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface. J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 2, pp. 247–257. doi: 10.1134/S0021894414020072.
- Gorshkov A.V., Prosviryakov E.Yu. Analytic solutions of stationary complex convection describing a shear stress field of different signs. Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2017, vol. 23, no. 2, pp. 32–41. doi: 10.21538/0134-4889-2017-23-2-32-41. (In Russian)
- Knyazev D.V. Solving the motion equations of a viscous fluid with a nonlinear dependence between a velocity vector and some spatial variables. J. Appl. Mech. Tech. Phys., 2018, vol. 59, no. 5, pp. 928–933. doi: 10.1134/S0021894418050218.
- Kuznetsova Yu.L., Skul’skiy O.I. Shear banding of a fluid flow with a nonmonotonic dependence of the flow stress on the strain rate. J. Appl. Mech. Tech. Phys., 2019, vol. 60, no. 7, pp. 1162–1174. doi: 10.1134/S002189441907006X.
- Meleshko S.V., Pukhnachev V.V. One class of partially invariant solutions of the Navier– Stokes equations. J. Appl. Mech. Tech. Phys., 1999, vol. 40, no. 2, pp. 208–216. doi: 10.1007/BF02468516.
- Polyanin A.D. Exact solutions to the Navier-Stokes equations with generalized separation of variables. Dokl. Phys., 2001, vol. 46, no. 10, pp. 726–731. doi: 10.1134/1.1415590.
- Polyanin A.D., Zaitsev V.F. Equations of an unsteady-state laminar boundary layer: General transformations and exact solutions. Theor. Found. Chem. Eng., 2001, vol. 35, no. 6, pp. 529–539. doi: 10.1023/A:1012945123859.
- Burmasheva N.V., Prosviryakov E.Yu. Thermocapillary convection of a vertical swirling liquid. Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 230–239. doi: 10.1134/S0040579519060034.
- Burmasheva N.V., Prosviryakov E.Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation. Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 2019, vol. 23, no. 2, pp. 341–360. doi: 10.14498/vsgtu1670.
- Burmasheva N.V., Prosviryakov E.Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Temperature field investigation. Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 2020, vol. 24, no. 3, pp. 528–541. doi: 10.14498/vsgtu1770.
- Burmasheva N.V., Prosviryakov E.Yu. On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect. J. King Saud Univ., 2020, vol. 32, no. 8, pp. 3364–3371. doi: 10.1016/j.jksus.2020.09.023.
- Burmasheva N.V., Privalova V.V., Prosviryakov E.Y. Layered Marangoni convection with the Navier slip condition. S˜adhana˜, 2021, vol. 46, art. 55. doi: 10.1007/s12046-021-01585-5.
- Privalova V.V., Prosviryakov E.Yu. Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid with allowance made for heat recovery. Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 2018, vol. 22, no. 3, pp. 532–548. doi: 10.14498/vsgtu1638.
- Burmasheva N.V., Prosviryakov E.Yu. Temperature field investigation in layered flows of a vertically swirling viscous incompressible fluid under two thermocapillar forces at a free boundary. DReaM, 2019, no. 1, pp. 6–42. (In Russian)
- Burmasheva N.V., Prosviryakov Y.E. Investigation of a velocity field for the Marangoni shear convection of a vertically swirling viscous incompressible fluid. AIP Conf. Proc., 2018, vol. 2053, no. 1, art. 040011.
- Andreev V.K. Birikh’s solutions of the convection equations and some generalizations. Preprint 1-10. Krasnoyarsk, IVM Sib. Otd. Ross. Akad. Nauk, 2010. 68 p. (In Russian)
- Andreev V.K., Stepanova I.V. Unidirectional flows of binary mixtures within the framework of the Oberbeck – Boussinesq model. Fluid Dyn., 2016, vol. 51, no. 2, pp. 136–147. doi: 10.1134/S0015462816020022.
- Poiseuille J.-L.-M. Recherches exp´erimenteles sur le mouvement des liquides dans les tubes de tr`es petits diam`etres. C. R. Hebd. Seances Acad. Sci., 1840, vol. 11, pp. 961–967. (In French)
- Poiseuille J.-L.-M. Recherches exp´erimenteles sur le mouvement des liquides dans les tubes de tr`es petits diam`etres. C. R. Hebd. Seances Acad. Sci., 1840, vol. 11, pp. 1041–1048. (In French)
- Poiseuille J.-L.-M. Recherches exp´erimenteles sur le mouvement des liquides dans les tubes de tr`es petits diam`etres (suite). C. R. Hebd. Seances Acad. Sci., 1841, vol. 12, pp. 112–115. (In French)
- Aristov S.N., Knyazev D.V. New exact solution of the problem of rotationally symmetric Couette – Poiseuille flow. J. Appl. Mech. Tech. Phys., 2007, vol. 48, no. 5, pp. 680–685. doi: 10.1007/s10808-007-0087-7.
- Troshkin O.V. Nonlinear stability of Couette, Poiseuille, and Kolmogorov plane channel flows. Dokl. Math., 2012, vol. 85, no. 2, pp. 181–185. doi: 10.1134/S1064562412020068.
- Popov D.I., Utemesov R.M. Effective spectral projection method for stability analysis of disperse flows. Izv. Altai. Gos. Univ., 2016, no. 1, pp. 52–57. doi: 10.14258/izvasu(2016)1-08. (In Russian)
- Alkeseev V.V., Gusev A.M. Free convection in geophysical processes. Sov. Phys. Usp., 1983, vol. 26, no. 10, pp. 906–922. doi: 10.1070/PU1983v026n10ABEH004520.
- Aristov S.N., Shvarts K.G. Vikhrevye techeniya v tonkikh sloyakh zhidkosti [Vortex Flows in Thin Layers of Fluid]. Kirov, VyatGU, 2011. 207 p. (In Russian)
- Aristov S.N., Shvarts K.G. Convective heat transfer in a locally heated plane incompressible fluid layer. Fluid Dyn., 2013, vol. 48, no. 3, pp. 330–335. doi: 10.1134/S001546281303006X.
- Aristov S.N., Shvarts K.G. On the influence of salinity exchange on the circulation of a fluid in an enclosed basin. Sov. J. Phys. Oceanogr., 1991, vol. 2, no. 4, pp. 293–298. doi: 10.1007/BF02346081.
- Bulgakov S.N. A study of the role of haline factors in the formation of the Black Sea waters circulation and structure. Cand. Phys.-Math. Sci. Diss. Sevastopol, 1986. 155 p. (In Russian)
- Bulgakov S.N., Korotaev G.K. Analytical model for stream circulation in enclosed water basins. Morsk. Gidrofiz. Zh., 1987, no. 3, pp. 434–446. (In Russian)
- Lin C.C. Note on a class of exact solutions in magneto-hydrodynamics. Arch. Ration. Mech. Anal., 1957, vol. 1, no. 1, pp. 391–395. doi: 10.1007/BF00298016.
- Sidorov A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. J. Appl. Mech. Tech. Phys., 1989, vol. 30, pp. 197– 203. doi: 10.1007/BF00852164.
- Aristov S.N. Vortex flows in thin layers of fluid. Extended Abstract of Doct. Phys.-Math. Sci. Diss. Vladivostok, 1990. 32 p. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.