R.N. Gumerov
Kazan Federal University, Kazan, 420008 Russia
E-mail: Renat.Gumerov@kpfu.ru
Received February 1, 2022
REVIEW ARTICLE
Full text PDF
DOI: 10.26907/2541-7746.2022.1.5-42
For citation: Gumerov R.N. Covering groups and their applications: A survey. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2022, vol. 164, no. 1, pp. 5–42. doi: 10.26907/2541-7746.2022.1.5-42. (In Russian)
Abstract
This article is a survey of covering group theorems and their applications. For a given covering mapping from the topological space onto a topological group, it is natural to pose the following question on the lifting of the group structure from the base of the covering mapping to its covering space: do there exist group operations on the covering space that turn this space into a topological group and the original covering mapping into a morphism of topological groups? Each statement giving the positive answer to this question for any class of covering mappings is called a covering group theorem. Here the main stages in the proof of the covering group theorem for finite-sheeted covering mappings from connected topological spaces onto arbitrary compact connected groups are explored. This theorem and the method of its proof have a number of interesting applications in analysis, topology, and topological algebra. The results on the coverings of topological groups obtained by applying this theorem or by using an approximation construction which is built in its proof are discussed. The theorems under study are those establishing a close relationship between the finite-sheeted coverings of compact connected Abelian groups and the polynomials over Banach algebras of continuous functions, i.e., Weierstrass polynomials. Informally speaking, all finite-sheeted coverings of compact connected Abelian groups are defined by zero sets of simple Weierstrass polynomials. Connected coverings of P-adic solenoids are considered. A complete description of such finite-sheeted coverings is provided by using the above-mentioned approximation construction. Applications of the covering group theorems are specified, as well as their corollaries to the study of the structure of coverings and to the problem with the existence of generalized means on topological groups. Particular attention is paid to the applications related to the properties of the solutions of algebraic equations with continuous coefficients.
Keywords: algebraic equation with continuous coefficients, Weierstrass variety, Weierstrass polynomial, covering group, covering mapping onto topological group, covering homomorphism, overlay mapping, P -adic solenoid, polynomial covering, covering group theorem
Acknowledgments. I would like to sincerely thank Professor V. Matijevi´c who kindly provided copies of the articles essential for this research, as well as Professor V.L. Hansen for the valuable information he gave about polynomial coverings in our correspondence.
This study was supported by the Kazan Federal University Strategic Academic Leadership Program (“PRIORITY-2030”).
References
- Pontryagin L.S. Nepreryvnye gruppy [Continuous Groups]. Moscow, Nauka, 1984. 520 p. (In Russian)
- Hansen V.L. Polynomial covering spaces and homomorphisms into braid groups. Pac. J. Math., 1979, vol. 81, no. 2, pp. 399–410. doi: 10.2140/pjm.1979.81.399.
- Hansen V.L. Coverings defined by Weierstrass polynomials. J. Reine Angew. Math., 1980, vol. 314, pp. 29–39. doi: 10.1515/crll.1980.314.29.
- Weierstrass K. Einige auf die Theorie der analytischen Functionen Ver¨anderlichen sich beziechende S¨atze. In: Mathematische Werke. Bd. Abhandlungen II. Berlin, Mayer und Mu¨ller, 1895, S. 135–188. (In German)
- Vietoris L. Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann., 1927, Bd. 97, S. 454–472. doi:10.1007/BF01447877. (In German)
- van Dantzig D., van der Waerden B.L. Über metrisch homogene R¨aume. Abh. Math. Semin. Univ. Hamburg, 1928, Bd. 6, S. 367–376. (In German)
- van Dantzig D. Über topologisch homogene Kontinua. Fundam. Math., 1930, Bd. 15, S. 102–125. doi: 10.4064/fm-15-1-102-125. (In German)
- van Dantzig D. Zur topologischen Algebra, III, Brouwersche und Cantorsche Gruppen. Compos. Math., 1936, vol. 3, pp. 408–426. (In German)
- Steenrod N., Eilenberg S. Osnovaniya algebraicheskoi topologii [Foundations of Algebraic Topology]. Moscow, Gos. Izd. Fiz.-Mat. Lit., 1958. 403 p. (In Russian)
- Hewitt E., Ross K. Abstraktnyi garmonicheskii analiz [Abstract Harmonic Analysis]. Vol. 1. Moscow, Nauka, 1975. 654 p. (In Russian)
- Kolmogorov A.N. Sur la notion de la moyenne. Atti Accad. Naz. Lincei. Rend., 1930, T. 12, F. 9, pp. 388–391. (In French)
- Engelking R. Obshchaya topologiya [General Topology]. Moscow, Mir, 1986. 751 p. (In Russian)
- Helemskii A. Ya. Gomologiya v banakhovykh i topologicheskikh algebrakh [The Homology of Banach and Topological Algebras]. Moscow, Izd. Mosk. Univ., 1986. 288 p. (In Russian)
- Massey W.S., Stallings J. Algebraicheskaya topologiya. Vvedenie [Algebraic Topology. An Introduction]. Moscow, Mir, 1977. 344 p. (In Russian)
- Chevalley L. Teoriya grupp Li [Theory of Lie Groups]. Vol. 1. Moscow, Izd. Inostr. Lit., 1948. 316 p. (In Russian)
- Naimark M.A. Teoriya predstavlenii grupp [Theory of Group Representations]. Moscow, Nauka, 1976. 560 p. (In Russian)
- Clark A. A generalization of Hagopian's theorem and exponents. Topol. Its Appl., 2002, vol. 117, no. 3, pp. 273–283. doi: 10.1016/S0166-8641(01)00027-X.
- Grigorian S.A., Gumerov R.N., Kazantsev A.V. Group structure in finite coverings of compact solenoidal groups. Lobachevskii J. Math., 2000, vol. 6, pp. 39–46.
- Grigorian S.A., Gumerov R.N. On a covering group theorem and its applications. Lobachevskii J. Math., 2002, vol. 10, pp. 9–16.
- Grigorian S.A., Gumerov R.N. On the structure of finite coverings of compact connected groups. arXiv:math/0403329, 2004. 17 p.
- Grigorian S.A., Gumerov R.N. On the structure of finite coverings of compact connected groups. Topol. Its Appl., 2006, vol. 153, no. 18, pp. 3598–3614. doi: 10.1016/j.topol.2006.03.010.
- Eda K., Matijevi´c V. Finite-sheeted covering maps over 2 -dimensional connected, compact Abelian groups. Topol. Its Appl., 2006, vol. 153, no. 7, pp. 1033–1045. doi: 10.1016/j.topol.2005.02.005.
- Alexandroff P. Untersuchungen u¨ber Gestalt und Lage abgeschlossener Mengen beliebiger Dimension. Ann. Math., 1929, vol. 30, no. 1/4, pp. 101–187. doi: 10.2307/1968272. (In German)
- Aleksandrov P.S. Some moments in the development of the Moscow school of general topology in the last half-century. Usp. Mat. Nauk, 1980, vol. 35, no. 4, pp. 217–221. (In Russian)
- Weil A. Integrirovanie v topologicheskikh gruppakh i ego primeneniya [Integration in Topological Groups and Its Applications]. Moscow, Izd. Inostr. Lit., 1950. 222 p. (In Russian)
- Hofmann K.H., Morris S.A. The Structure of Compact Groups: A Primer for the Student – A Handbook for the Expert. Berlin, Walter de Gruyter, 2006. xvii, 858 p. de Gruyter Stud. Math., 25.
- Spanier E.H. Algebraic Topology. New York, McGraw-Hill, 1966. XIV, 548 p.
- Gumerov R.N. On covering groups. Russ. Math., 2020, vol. 64, no. 3, pp. 76–81. doi: 10.3103/S1066369X20030081.
- Mardeˇsi´c S., Matijevi´c V. Classifying overlay structures of topological spaces. Topol. Its Appl., 2001, vol. 113, nos. 1–3, pp. 167–209. doi: 10.1016/s0166-8641(00)00012-2.
- Taylor R.L. Covering groups of non-connected topological groups. Proc. Am. Math. Soc., 1954, vol. 5, no. 5, pp. 753–768. doi: 10.1090/S0002-9939-1954-0087028-0.
- Brown R., Mucuk O. Covering groups of non-connected topological groups revisited. Math. Proc. Cambridge Philos. Soc., 1994, vol. 115, no. 1, pp. 97–110. doi: 10.1017/S0305004100071942.
- Eda K., Matijevi´c V. Covering maps over solenoids which are not covering homomorphisms. Fundam. Math., 2013, vol. 221, no. 1, pp. 69–82. doi: 10.4064/fm221-1-3.
- Fox R.H. On shape. Fundam. Math., 1972, vol. 74, pp. 47–71. doi: 10.4064/fm-74-1-47-71.
- Fox R.H. Shape theory and covering spaces. In: Dickman R.F., Fletcher P. (Eds.) Topology Conference. Lecture Notes in Mathematics. Vol. 375. Berlin, Heidelberg, Springer, 1974, pp. 71–90. doi: 10.1007/BFb0064013.
- Moore T.T. On Fox's theory of overlays. Fundam. Math., 1978, vol. 99, pp. 205–211. doi: 10.4064/fm-99-3-205-211.
- Matijevi´c V. Classifying finite-sheeted coverings of paracompact spaces. Rev. Mat. Comput., 2003, vol. 16, no. 1, pp. 311–327. doi: 10.5209/rev REMA.2003.v16.n1.16883.
- Brazas J. Semicoverings, coverings, overlays and open subgroups of the quasitopological fundamental group. Topol. Proc., 2014, vol. 44, pp. 285–313.
- Dydak J. Overlays and group actions. Topol. Its Appl., 2016, vol. 207, pp. 22–32. doi: 10.1016/j.topol.2016.03.031.
- Eda K., Matijević V. Existence and uniqueness of group structures on covering spaces over groups. Fundam. Math., 2017, vol. 238, pp. 241–267. doi: 10.4064/fm990-10-2016.
- Gumerov R.N. Group structures and their applications in analysis and topological algebra. Doct. Phys.-Math. Sci. Diss. Kazan, 2020. 214 p.(In Russian)
- Deckard D., Pearcy C. On matrices over the ring of continuous functions on a Stonian space. Proc. Am. Math. Soc., 1963, vol. 14, pp. 322–328. doi: 10.1090/S0002-9939-1963-0147926-1.
- Deckard D., Pearcy C. On algebraic closure in function algebras. Proc. Am. Math. Soc., 1964, vol. 15, pp. 259–263. doi: 10.1090/S0002-9939-1964-0161171-6.
- Countryman R.S., Jr. On the characterization of compact Hausdorff X for which C(X) is algebraically closed. Pac. J. Math., 1967, vol. 20, no. 3, pp. 433–448. doi: 10.2140/pjm.1967.20.433.
- Gorin E.A., Lin V.Ya. Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids. Sb. Math., 1969, vol. 7, no. 4, pp. 569–596. doi: 10.1070/SM1969v007n04ABEH001104.
- Zhikov V.V. The problem on the existence of almost periodic solutions of differetial and operator equations. Tr. VELI, 1969. vol. 8, pp. 94–188. (In Russian)
- Walther A. Algebraische Funktionen von fastperiodischen Funktionen. Monatsh. Math. Phys., 1933, Bd. 40, S. 444–457. doi: 10.1007/BF01708882.
- Bohr H., Flanders D.A. Algebraic equations with almost-periodic coefficients. In: Det Kgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddelelser. København, Levin & Munksgaard, 1937, vol. 15, pp. 1–49.
- Bohr H., Flanders D.A. Algebraic functions of analytic almost periodic functions. Duke Math. J., 1938, vol. 4, no. 4, pp. 779–787. doi: 10.1215/S0012-7094-38-00468-5.
- Lin V.Ya. Artin braids and the groups and spaces connected with them. J. Sov. Math., 1982, vol. 18, pp. 736–788. doi: 10.1007/BF01091963.
- Hatori O., Miura T. On a characterization of the maximal ideal spaces of commutative C∗-algebras in which every element is the square of another. Proc. Am. Math. Soc., 2000, vol. 128, no. 4, pp. 1185–1189. doi: 10.1090/S0002-9939-99-05454-4.
- Miura T., Niijima K. On a characterization of the maximal ideal spaces of algebraically closed commutative C∗ algebras. Proc. Am. Math. Soc., 2003, vol. 131, no. 9, pp. 2869– 2876. doi: 10.1090/S0002-9939-02-06835-1.
- Kawamura K., Miura T. On the existence of continuous (approximate) roots of algebraic equations. Topol. Its Appl., 2007, vol. 154, no. 2, pp. 434–442. doi: 10.1016/j.topol.2006.05.008.
- Honma D., Miura T. On characterization of compact Hausdorff space X for which certain algebraic equation is solvable in C(X). Tokyo J. Math., 2007, vol. 30, no. 2, pp. 403–416. doi: 10.3836/tjm/1202136685.
- Kawamura K., Miura T. On the root closedness of continuous function algebras. Topol. Its Appl., 2009, vol. 156, no. 3, pp. 624–628. doi: 10.1016/j.topol.2008.08.015.
- Kawamura K. Higher dimensional compacta with algebraically closed function algebras. Tokyo J. Math., 2009, vol. 32, no. 2, pp. 441–445. doi: 10.3836/tjm/1264170242.
- Hansen V.L. Embedding finite covering spaces into trivial bundles. Math. Ann., 1978, vol. 236, pp. 239–243. doi: 10.1007/BF01351369.
- Hansen V.L. Braids and Coverings: Selected Topics. Cambridge, Cambridge Univ. Press, 1989. 202 p. London Math. Soc. Stud. Texts, vol. 18.
- Hansen V.L. Weierstrass polynomials for links. Beitr. Algebra and Geom., 1998, vol. 39, no. 2, pp. 359–365.
- Bardakov V.G., Vesnin A.Yu. Weierstrass polynomials of singular braids and links. Chebyshevskii Sb., 2005, vol. 6, no. 2, pp. 36–51. (In Russian)
- Møller J.M. On polynomial coverings and their classification. Math. Scand., 1980, vol. 47, no. 1, pp. 116–122. doi: 10.7146/math.scand.a-11877.
For other references see (total number of references: 99)
The content is available under the license Creative Commons Attribution 4.0 License.