E.G. Glazova∗ , S.V. Krylov∗∗ , D.T. Chekmarev∗∗∗
Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950 Russia
E-mail: ∗glazova@mech.unn.ru, ∗∗krylov@mech.unn.ru, ∗∗∗4ekm@mm.unn.ru
Received February 11, 2020
Full text PDF
DOI: 10.26907/2541-7746.2020.2.137-147
For citation: Glazova E.G., Krylov S.V., Chekmarev D.T. Numerical simulation of the ice sphere impact onto the barrier. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 2, pp. 137–147. doi: 10.26907/2541-7746.2020.2.137-147. (In Russian)
Abstract
Two mathematical models of dynamic deformation and possible destruction of ice masses were modified by equipping them with experimental functions and constants. As their functions and constants, we used both our own experimental data and the results of other authors obtained from the analysis of modern scientific literature. In the first model, elastoplastic ice deformation is described using the relations proposed by S.S. Grigoryan. They are equipped with a nonlinear irreversible experimental dependence of the volume compressibility of ice on pressure. The second model is based on the equations of ice, as a damaging and differently-resisting medium with a yield strength determined by the strain rate. These models are implemented in the existing computer programs for mathematical simulation of dynamic processes of impact interaction of media with structural elements. The verification of modified software was carried out by comparing the known experimental data with the results of numerical calculations of the processes of impact interaction of ice products with hard barriers. It was concluded that the data of modified programs can be used for assessing the force effect of ice on structural elements in the considered range of impact speeds.
Keywords: numerical simulation, ice, impact interaction, experiment, verification
Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 19-08-00320), as well as by the Russian Foundation for Basic Research and the National Natural Science Foundation of China (project no. 19-58-53005).
References
- Schulson E.M. Brittle failure of ice. Eng. Fract. Mech., 2001, vol. 68, nos. 17-18, pp. 1839– 1887. doi: 10.1016/S0013-7944(01)00037-6.
- Carney K.S., Benson D.J., DuBois P., Lee R. A phenomenological high strain rate model with failure for ice. Int. J. Solids Struct., 2006, vol. 43, nos. 25–26, pp. 7820–7839. doi: 10.1016/j.ijsolstr.2006.04.005.
- Pernas-S´anchez J., Pedroche D.A., Varas D., L´opez-Puente J., Zaera R. Numerical modeling of ice behavior under high velocity impacts. Int. J. Solids Struct., 2012, vol. 49, no. 14, pp. 1919–1927. doi: 10.1016/j.ijsolstr.2012.03.038.
- Anghileri M., Castelletti L.-M.L., Invernizzi F., Mascheroni M. A survey of numerical models for hail impact analysis using explicit finite element codes. Int. J. Impact Eng., 2005, vol. 31, no. 8, pp. 929–944. doi: 10.1016/j.ijimpeng.2004.06.009.
- Tippmann J.D., Kim H., Rhymer D. Experimentally validated strain rate dependent material model for spherical ice impact simulation. Int. J. Impact Eng., 2013, vol. 57, pp. 43–54. doi: 10.1016/j.ijimpeng.2013.01.013.
- Sun J., Lam N., Zhang L., Ruan D., Gad E. Contact forces generated by hailstone impact. Int. J. Impact Eng., 2015, vol. 84, pp. 145–158. doi: 10.1016/j.ijimpeng.2015.05.015.
- Dousset S., Girardot J., Dau F., Gakwaya A. Prediction procedure for hail impact. EPJ Web Conf., 2018, vol. 183, art. 01046, pp. 1–6. doi: 10.1051/epjconf/201818301046.
- Lobanov V.A. Modelling of ice interaction with constructions. Vestn. Nauchno-Tekh. Razvit., 2011, no. 10, pp. 31–39. (In Russian)
- Teoreticheskie i eksperimental’nye issledovaniya vysokoskorostnogo vzaimodeistviya tel [Theoretical and Experimental Studies on High-Velocity Interaction of Bodies]. Gerasimov A.V. (Ed.). Tomsk, Izd. Tomsk. Univ., 2007. 572 p. (In Russian)
- Glazyrin V.P., Orlova Yu.N. Numerical investigation of freshwater ice behavior under the action compact impactors in subsonic of speeds. Tr. Tomsk. Gos. Univ., 2009, vol. 273, no. 2, pp. 209–212. (In Russian)
- Glazyrin V.P., Orlov M.Yu., Orlova Yu.N. Computer modeling of penetration of a large-sized striker in water-ice media. Tr. Tomsk. Gos. Univ. Ser. Fiz.-Mat., 2012, vol. 292, pp. 329–334. (In Russian)
- Glazyrin V.P., Orlov M.Yu., Orlova Yu.N. Analysis of ice striker penetration into barriers. Izv. Vyssh. Uchebn. Zaved., Fiz., 2013, vol. 56, nos. 7–3, pp. 41–44. (In Russian)
- Tsuprik V.G. Theoretical research on the specific energy of mechanical fracture of sea ice. Vestn. NGU. Ser. Mat., Mekh., Inform., 2013, vol. 13, no. 2, pp. 119–125. (In Russian)
- Kraus E.I., Melnikov A.Yu., Fomin V.M., Shabalin I.I. Penetration of Steel projectiles through finite-thickness ice targets. J. Appl. Mech. Tech. Phys., 2019, vol. 60, no. 3, pp. 526–532. doi: 10.1134/S0021894419030155.
- Grigoryan S.S. Fundamental concepts of soil dynamics. Prikl. Mat. Mekh., 1960, vol. 24, no. 6, pp. 1057–1072. (In Russian)
- Bragov A., Igumnov L., Konstantinov A., Lomunov A., Filippov A., Shmotin Yu., Didenko R., Krundaeva A. Investigation of strength properties of freshwater ice. EPJ Web Conf., 2015, vol. 94, art. 01070. doi: 10.1051/epjconf/20159401070.
- Balandin V.V., Krylov S.V., Poverennov E.Yu., Sadovskii V.V. Numerical simulation of shock interaction of an elastic cylinder with ice. Probl. Pochn. Plast., 2017, vol. 79, no. 1, pp. 93–103. doi: 10.32326/1814-9146-2017-79-1-93-103. (In Russian)
- Fomin V.M., Gulidov A.I., Sapozhnikov G.A., Shabalin I.I., Babakov V.A., Kuropatenko V.F., Kiselev A.B., Trishin Yu.A., Sadyrin A.I., Kiselev S.P., Golovlev I.F. Vysokoskorostnoe vzaimodeistvie tel [High-Velocity Interaction of Bodies]. Novosibirsk, Izd. Sib. Otd. Ross. Akad. Nauk, 1999. 600 p. (In Russian)
- Sadyrin A.I. A model of dynamic deformation and fracture of concrete. Probl. Pochn. Plast., 2003, no. 65, pp. 5–14. (In Russian)
- Abuzyarov K.M., Abuzyarov M.Kh., Glazova E.G., Kochetkov A.V., Krylov S.V. Simulation of three-dimensional dynamic interaction of constructions with media on the basis of S.K. Godunov’s scheme and multi-mesh algorithms. XVII Mezhdunar. konf. “Supervychisleniya i matematicheskoe modelirovanie”, 15–19 okt. 2018 g. [Proc. Int. Conf. “Supercomputation and Mathematical Simulation”, Oct. 15–19, 2018]. Shagaliev R.M. (Ed.). Sarov, FGUP “RFYaTs-VNIIEF”, 2019, pp. 18–23. (In Russian)
- Abuzyarov M.Kh., Krylov S.V., Tsvetkova E.V. Simulation of the hydro-elastoplastic interaction using the UPSGOD codes. Probl. Pochn. Plast., 2013, no. 75, pp. 25–32. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.