O.E. Sukhoveeva
Institute of Geography, Russian Academy of Sciences, Moscow, 119017 Russia
E-mail: olgasukhoveeva@gmail.com
Received December 12, 2019
Full text PDF
DOI: 10.26907/2542-064X.2020.3.473-501
For citation: Sukhoveeva O.E. Problems of modelling carbon biogeochemical cycle in agricultural landscapes. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 3, pp. 473–501. doi: 10.26907/2542-064X.2020.3.473-501. (In Russian)
Abstract
The research is focused on the carbon cycle features in soil that are formed under agricultural land use and should be taken into account for mathematical simulation, including assessments of greenhouse gases emissions and specific carbon balance in arable soils. A classification of carbon models was developed; global (carbon-nitrogen and multi-element) and ecosystem models were singled out. The latter ones fall into carbon cycle models (agroecosystem, phytocenosis, and greenhouse gases (СО2 and СН4) emissions) and carbon-nitrogen cycle models (various ecosystems, forest, and microbiological). The following difficulties arising when mathematical methods are used for description of the carbon cycle were discussed: multiple methods of calculation; high requirements to input data; limited availability of input information; necessity to consider climate change; errors in description of the functional dependence of CO2 emission on temperature. The challenges of quantitative evaluation of components of the carbon biogeochemical cycle were analyzed, i.e., the dual role of soil both as a carbon stock and a source of carbon compounds, which are greenhouse gases, as well as the interaction of carbon and nitrogen cycles, separation of the pool of soil organic carbon into fractions, and the ratio of microbial and root respirations. Further development of the obtained models will help to better assess greenhouse gases fluxes, to properly determine the effect of climatic and anthropogenic factors on them, and to create a strategy for reducing their emissions.
Keywords: agroecosystems, anthropogenic impact, biogeochemical cycles, soil respiration, climate change, simulation modelling, carbon sources and stocks, greenhouse gases, soil organic matter, soil organic carbon, agriculture, carbon models, carbon dioxide emission
Acknowledgements. The study was performed as part of state assignment no. 0148-2019-0009 to the Institute of Geography, Russian Academy of Sciences.
References
- IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edenhofer O., Pichs-Madruga R., Sokona Y., Farahani E., Kadner S., Seyboth K., Adler A., Baum I., Brunner S., Eickemeier P., Kriemann B., Savolainen J., Schlömer S., von Stechow Ch., Zwickel T., Minx J.C. (Eds.). Cambridge, New York, Cambridge Univ. Press, 2014. 1435 p.
- Poluektov R.A., Smolyar E.I., Terleev V.V., Topazh A.G. Modeli produktsionnogo protsessa sel’skokhozyaistvennykh kul’tur [Modelling the Production Process of Agricultural Crops]. St. Petersburg, Izd. S.-Petersb. Univ., 2011. 390 p. (In Russian)
- Ol’chev A.V. Fluxes of CO2 and H2O in forest ecosystems under climate change conditions (evaluation by using mathematical models). Extended Abstract of Doc. Biol. Sci. Diss. Moscow, 2015. 51 p. (In Russian)
- Priputina I.V., Frolova G.G., Shanin V.N. Substantiation of optimum planting schemes for forest plantations: A computer experiment. Komp’yut. Issled. Model., 2016, vol. 8, no. 2, pp. 333–343. (In Russian)
- Blagodatsky S.A., Yevdokimov I.V., Larionova A.A., Richter J. Microbial growth in soil and nitrogen turnover: Model calibration with laboratory data. Soil Biol. Biochem., 1998, vol. 30, no. 13, pp. 1757–1764. doi: 10.1016/S0038-0717(98)00029-7.
- Scurlock J.M.O., Cramer W., Olson R.J., Parton W.J., Prince S.D. Terrestrial NPP: Toward a consistent data set for global model evaluation. Ecol. Appl., 1999, vol. 9, no. 3, pp. 913–919. doi: 10.2307/2641338.
- Golubyatnikov L.L., Svirezhev Yu.M. Life-cycle model of terrestrial carbon exchange. Ecol. Modell., 2008, vol. 213, no. 2, pp. 202–208. doi: 10.1016/j.ecolmodel.2007.12.001.
- Tonitto C., Powell T.M. Development of a spatial terrestrial nitrogen model for application to Douglas-fir forest ecosystems. Ecol. Modell., 2006, vol. 193, nos. 3–4, pp. 340–362. doi: 10.1016/j.ecolmodel.2005.08.041.
- Tarko A.M. A model of the carbon and nitrogen biogeochemical cycle in forest ecosystem. In: Regulyatornaya rol’ pochvy v funktsionirovanii taezhnykh ekosistem [The Regulatory Role of Soil in the Functioning of Taiga Ecosystems]. Dobrovol’skii G.V. (Ed.). Moscow, Nauka, 2002, pp. 215–226. (In Russian)
- Cox P.M., Betts R.A., Jones C.D., Spall S.A., Totterdell I.J. Modelling vegetation and the carbon cycle as interactive elements of the climate system. In: Pearce R. (Ed.) Meteorology at the Millennium. New York, Acad. Press, 2001, pp. 259–279.
- Volodin E.M. Atmosphere-ocean general circulation model with the carbon cycle. Izv., Atmos. Oceanic Phys., 2007, vol. 43, no.3, pp. 266–280. doi: 10.1134/S0001433807030024.
- Mokhov I.I., Eliseev A.V., Karpenko A.A. Sensitivity of the IFA RAN Global Climatic Model with an interactive carbon cycle to anthropogenic influence. Dokl. Earth Sci., 2006, vol. 407, no. 2, pp. 424–428. doi: 10.1134/S1028334X06030172.
- Belyuchenko I.S., Smagin A.V., Popok L.B., Popok L.E. Analiz dannykh i matematicheskoe modelirovanie v ekologii i prirodopol’zovanii [Data Analysis and Mathematical Modelling in Ecology and Nature Management]. Krasnodar, Izd. Kuban. Gos. Agrar. Univ., 2015. 313 p. (In Russian)
- Solodyankina S.V., Cherkashin A.K. Geoinformation analysis and modelling of geosystem functions of carbon stock accumulation in mountain forests of the Baikal region in the changing environment. Vestn. NGU. Ser. Inf. Tekhnol., 2011, vol. 9, no. 1, pp. 44–55. (In Russian)
- Rosenstock T.S., Rufino M.C., Butterbach-Bahl K., Wollenberg E., Richards M. (Eds.) Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture. Springer, 2016. XV, 203 p. doi: 10.1007/978-3-319-29794-1.
- Sukhoveeva O.E. Modelling of greenhouse gases fluxes and cycles of carbon and nitrogen in soils (overview). Zh. Estestvennonauchn. Issled., 2017, vol. 2, no. 7, pp. 61–76. (In Russian)
- Cao M., Dent J.B., Heal O.W. Modeling methane emissions from rice paddies. Global Biogeochem. Cycles, 1995, vol. 9, no. 2, pp. 193–195. doi: 10.1029/94GB03231.
- Raich J.W., Potter C.S. Global patterns of carbon dioxide emission from soils. Global Biogeochem. Cycles, 1995, vol. 9, no. 1, pp. 23–36. doi: 10.1029/94GB02723.
- Tsuji G.Y., Uehara G., Balas S. DSSAT v3. Honolulu, Univ. of Hawaii, 1994. 661 р.
- Gao L., Jin Z., Huan Y. An Optimizing Decision-Making System for Rice Culture. Beijing, China Agric. Sci. Technol. Press, 1992.
- Sellers P.J., Mintz Y., Sud Y.C., Dalcher A. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 1986, vol. 43, no. 6, pp. 505–531. doi: 10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.
- Penning de Vries F.W.T., Jansen D.M., Ten Berge H.F.M., Bakema A. Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pudoc, Wageningen, 1989. 271 р.
- Jenkinson D.S., Hart P.B.S., Rayner J.H., Parry L.C. Modelling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bull., 1987, no. 15, pp. 1–8.
- Sokolov A.P., Kicklighter D.W., Melillo J.M., Felzer B.S., Schlosser C.A., Cronin T.W. Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J. Clim., 2008, vol. 21, no. 15, pp. 3776–3796. doi: 10.1175/2008JCLI2038.1.
- Komarov A., Chertov O., Zudin S., Nadporozhskaya M., Mikhailov A., Bykhovets S., Zudina E., Zoubkova E. EFIMOD 2 – a model of growth and elements cycling in boreal forest ecosystems. Ecol. Modell., 2003, vol. 170, pp. 373–392.
- Parton W.J., Scurlock J.M.D., Ojima D.S., Gilmanov T.G., Scholes R.J., Schimel D.S., Kirchner T., Menaut J.C., Seastedt T., Garcia Moya E., Kamnalrut A., Kinyamario J.L. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cycles, 1993, vol. 7, no. 4, pp. 785–809. doi: 10.1029/93GB02042.
- Li C., Frolking S., Frolking T.A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res., 1992, vol. 97, no. D9, pp. 9759–9776. doi: 10.1029/92JD00509.
- Grant R.F., Pattey E. Modelling variability in N2O emissions from fertilized agricultural fields. Soil Biol. Biochem., 2003, vol. 35, no. 2, pp. 225–243. doi: 10.1016/S0038-0717(02)00256-0.
- Zaehle S., Friend A.D. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochem. Cycles, 2010, vol. 24, no. 1, art. GB1005, pp. 1–13. doi: 10.1029/2009GB003521.
- Chertov O., Komarov A., Shaw C., Bykhovets S., Frolov P., Shanin V., Grabarnic P., Priputina I., Zubkova E., Shashkov M. Romul_Hum – A model of soil organic matter formation coupling with soil biota activity. II. Parameterization of the soil food web biota activity. Ecol. Modell., 2017, vol. 345, pp. 125–139. doi: 10.1016/j.ecolmodel.2016.10.024.
- Raich J.W., Rastetter E.B., Melillo J.M., Kicklighter D.W., Steudler P.A., Peterson B.J., Grace A.L., Moore III B., Vorosmarty C.J. Potential net primary productivity in South America: Application of a global model. Ecol. Appl., 1991, vol. 1, pp. 399–429. doi: 10.2307/1941899.
- Blagodatsky S.A. Microbial biomass and modelling nitrogen cycle in soil. Extended Abstract of Doct. Biol. Sci. Diss. Pushchino, 2011. 51 p. (In Russian)
- Dickinson R.E., Henderson-Sellers A., Kennedy P.J., Wilson M.F. Biosphere atmosphere transfer scheme (BATs) for NCAR community climate model. NCAR Technical Note No. NCAR/TN-275-+STR. Boulder, Colo., Natl. Cent. Atmos. Res., 1986. 82 p. doi: 10.5065/D6668B58.
- Jain A.K., Kheshgi H.S., Wuebbles D.J. Integrated science model for assessment of climate change model. Proc. Annu. Meet. Exhib. Air Waste Manage. Assoc., Cincinnati, OH (United States), June 19–24, 1994. United States, 1994. Available at: https://www.osti.gov/servlets/purl/10151110.
- Xu-Ri, Prentice I.C. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Global Change Biol., 2008, vol. 14, no. 8, pp. 1745–1764. doi: 10.1111/j.1365-2486.2008.01625.x.
- Wania R., Meissner K.J., M. Eby M., Arora V.K., Ross I., Weaver A.J. Carbon-nitrogen feedbacks in the UVic ESCM. Geosci. Model Dev., 2012, vol. 5, no. 5, pp. 1137–1160. doi: 10.5194/gmd-5-1137-2012.
- Tarko A.M. Mathematical modelling of global biogeochemical cycles of carbon and nitrogen. Extended Abstract of Doct. Phys.-Math. Sci. Diss. Moscow, 1992. 47 p. (In Russian)
- Elzen den M.G.J., Beusen A.H.W., Rotmans J. Modelling global biogeochemical cycles an integrated assessment approach. RIVM Report No. 461502007. Bilthoven, the Netherlands, RIVM, 1995. 137 p.
- Krapivin V.F., Svirezhev Yu.M., Tarko A.M. Matematicheskoe modelirovanie global’nykh biosfernykh protsessov [Mathematical Modelling of Global Biospheric Processes]. Moscow, Nauka, 1982. 272 p. (In Russian)
- Giltrap D.L., Li C., Saggar S. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agric., Ecosyst. Environ., 2010, vol. 136. nos. 3–4, pp. 292–300. doi: 10.1016/j.agee.2009.06.014.
- Leip A., Marci G., Koeble R., Kempen M., Britz W., Li C. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences, 2008, vol. 5, no. 1, pp. 73–94. doi: 10.5194/bg-5-73-2008.
- FACCE-JPI Projects Booklet: FACCE ERA-NET Plus, MACSUR and Multi-Partner Call on GHG Mitigation. Brussels, Belgium, FACCE-JPI, 2017. 42 p.
- Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thornley J.H.M., Whitmore A.P. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, vol. 81, nos. 1–2, pp. 153–225. doi: 10.1016/S0016-7061(97)00087-6.
- Larionova A.A., Kurganova I.N., de Gerenyu V.O.L., Zolotareva B.N., Yevdokimov I.V., Kudeyarov V.N. Carbon dioxide emissions from agrogray soils under climate changes. Eurasian Soil Sci., 2010, vol. 43, no. 2, pp. 168‒176. doi: 10.1134/S1064229310020067.
- Markovskaya G.K., Mel’nikova N.A., Nechaeva E.Kh. Biological activity of soil treated by different methods during spring wheat cultivation. Agrar. Nauchn. Zh., 2014, no. 2, pp. 22–25. (In Russian)
- Kosolapov V.M., Trofimov I.A., Trofimova L.S., Yakovleva E.P. Agrolandshafty Tsentral’nogo Chernozem’ya. Raionorovanie i upravlenie [Agrolandscapes of Central Chernozem Zone: Zonation and Management]. Moscow, Nauka, 2015. 198 p. (In Russian)
- Semenov V.M., Tulina A.S. Comparison of mineralized pool of organic matter in soils of natural and agricultural ecosystems. Agrokhimiya, 2011, no. 12, pp. 53–63. (In Russian)
- Rees R.M., Bingham I.J., Baddeley J.A., Watson C.A. The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma, 2005. vol. 128, nos. 1–2, pp. 130–154. doi: 10.1016/j.geoderma.2004.12.020.
- Avksent’ev A.A. Greenhouse gas emissions (СО2, N2О, СH4) by ordinary chernozem of the Stone Steppe. Extended Abstract of Cand. Biol. Sci. Diss. Voronezh, 2011. 21 p. (In Russian)
- Goncharova O.Yu., Telesnina V.M. The biological activities of post-agrogenic soils (based on an example from the Moscow region). Moscow Univ. Soil Sci. Bull., 2010, vol. 65, no. 4, pp. 159–167. doi: 10.3103/S0147687410040058.
- Gedgafova F.V., Uligova T.S., Gorobtsova O.N., Tembotov R.Kh. The biological activity of chernozems in the Central Caucasus Mountains (Terskii variant of altitudinal zonality), Kabardino-Balkaria. Eurasian Soil Sci., 2015, vol. 48, no. 12, pp. 1341–1348. doi: 10.1134/S1064229315120078.
- Stol’nikova E.V. Microbial biomass, its structure and greenhouse gases production by soils under different land use. Extended Abstract of Cand. Biol. Sci. Diss. Pushchino, 2010. 25 p. (In Russian)
- Kolchugina T.P., Vinson T.S., Gaston G.G., Rozhkov V.A., Schlentner S.F. Carbon pools, fluxes, and sequestration potential in soil of the Former Soviet Union. In: Lal R., Kimble J., Levine E., Stewart B.A. (Eds.) Soil Management and Greenhouse Effect. Boca Raton, London, Tokyo, Lewis Publ., 1995, pp. 25–40.
- Lal R. Soil carbon sequestration to mitigate climate change. Geoderma, 2004, vol. 123. nos. 1–2, pp. 1–22. doi: 10.1016/j.geoderma.2004.01.032.
- Semenov V.M., Ivannikova L.A., Kuznetsova T.V., Semenova N.A., Tulina A.S. Mineralization of organic matter and the carbon sequestration capacity of zonal soils. Eurasian Soil Sci., 2008, vol. 41, no. 7, pp. 717–730. doi: 10.1134/S1064229308070065.
- Khokhlov V.G. Organic matter of sod-podzolic soils in the Smolensk region. Extended Abstract of Cand. Agric. Sci. Diss. Moscow, 1980. 16 p. (In Russian)
- Shikhova L.N., Lisitsyn E.M. Carbon content and stock dynamics in humus of arable podzolic soils of the south taiga subzone in the Kirov region. Vestn. Udmurt. Univ. Ser. Biol. Nauki Zemle, 2014, no. 2, pp. 7–13. (In Russian)
- Zavyalova N.E., Mitrofanova E.M., Kazakova I.V. Mineral fertilizers and lime influence on the content of active elements in the organic matter of sod-podzolic soil and spring wheat yield. Dostizh. Nauki Tekh. APK, 2013, no. 11, pp. 19–20. (In Russian)
- Zinyakova N.B. Active organic matter in gray forest soil under organic and mineral fertilization systems. Cand. Biol. Sci. Diss. Pushchino, 2014. 167 p. (In Russian)
- Bezuglova O.S., Yudina N.V. Interrelationship between the physical properties and the humus content of chernozems in the south of European Russia. Eurasian Soil Sci., 2006, vol. 39, no. 2, pp. 187–194. doi: 10.1134/S1064229306020098.
- IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston H.S., Buendia L., Miwa K., Ngara T., Tanabe K. (Eds.). Hayama, IGES, 2006. 37 p.
- Houghton R.A., House J.I., Pongratz J., van der Werf G.R., DeFries R.S., Hansen M.C., Le Quere C., Ramankutty N. Carbon emissions from land use and land-cover change. Biogeosciences, 2012, vol. 9, no. 12, pp. 5125–5142. doi: 10.5194/bg-9-5125-2012.
- Friedlingstein P., Jones M.W., O’Sullivan M., Andrew R.M., Hauck J., Peters G.P., Peters W., Pongratz J., Sitch S., Le Quéré C., Bakker D.C.E., Canadell J.G., Ciais P., Jackson R.B., Anthoni P., Barbero L., Bastos A., Bastrikov V., Becker M., Bopp L., Buitenhuis E., Chandra N., Chevallier F., Chini L.P., Currie K.I., Feely R.A., Gehlen M., Gilfillan D., Gkritzalis T., Goll D.S., Gruber N., Gutekunst S., Harris I., Haverd V., Houghton R.A., Hurtt G., Ilyina T., Jain A.K., Joetzjer E., Kaplan J.O., Kato E., Klein Goldewijk K., Korsbakken J.I., Landschützer P., Lauvset S.K., Lefèvre N., Lenton A., Lienert S., Lombardozzi D., Marland G., McGuire P.C., Melton J.R., Metzl N., Munro D.R., Nabel J.E.M.S., Nakaoka S.-I., Neill C., Omar A. M., Ono T., Peregon A., Pierrot D., Poulter B., Rehder G., Resplandy L., Robertson E., Rödenbeck C., Séférian R., Schwinger J., Smith N., Tans P.P., Tian H., Tilbrook B., Tubiello F.N., van der Werf G.R., Wiltshire A.J., Zaehle S. Global Carbon Budget 2019. Earth Syst. Sci. Data, 2019, vol. 11, no. 4, pp. 1783–1838. doi: 10.5194/essd-11-1783-2019.
- Zavarzin G.A. (Ed.) Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii [Carbon Pools and Fluxes in Russian Terrestrial Ecosystems]. Moscow, Nauka, 2007. 315 p. (In Russian)
- Smith J., Smith P., Wattenbach M., Gottschalk P., Romanenkov V.A., Shevtsova L.K., Sirotenko O.D., Rukhovich D.I., Koroleva P.V., Romanenko I.A., Lisovoi N.V. Projected changes in the organic carbon stocks of croplands mineral soils of European Russia and the Ukraine, 1990–2070. Global Change Biol., 2007, vol. 13, no. 2, pp. 342–356. doi: 10.1111/j.1365-2486.2006.01297.x.
- Solodyankina S.V., Cherkashin A.K. Economic GIS assessment of the vegetation capacity for neutralization of anthropogenic emissions of carbon dioxide in the south of Eastern Siberia. Vestn. NGU. Ser. Inf. Tekhnol., 2014, vol. 12, no. 2, pp. 99–108. (In Russian)
- Naumov A.V. Soil respiration: Constituents, ecological functions, geographical patterns. Extended Abstract of Doct. Biol. Sci. Diss. Novosibirsk, 2003. 39 p. (In Russian)
- Smagin A.V., Sadovnikova N.B., Shcherba T.I., Shnyrev N.A. Abiotic factors of soil respiration. Ekol. Vestn. Sev. Kavk., 2010, vol. 6, no. 1, pp. 5–13. (In Russian)
- Chen S., Zou J., Hu Z., Chen H., Lu Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agric. For. Meteorol., 2014, vol. 198–199, pp. 335–346. doi: 10.1016/j.agrformet.2014.08.020.
- Estimation of emissions from agriculture. United Nations Framework Convention on Climate Change. FCCC/SBSTA/2004/INF.4. Bonn, UNFCCC, 2004. 20 p. Available at: http://unfccc.int/ resource/docs/2004/sbsta/inf04.pdf.
- Chertov O.G., Nadporozhskaya M.A. Models of soil organic matter dynamics: Problems and prospects. Komp’yut. Issled. Model., 2016, vol. 8, no. 2, pp. 391–399. (In Russian)
- Cai Z.T., Sawamoto T., Li C., Kang G., Boonjawat J., Mosier A., Wassman R., Tsuruta H. Field validation of the DNDC model for greenhouse gas emission in East Asia cropping system. Global Biochem. Cycles, 2003, vol. 17, no. 4, art. 1107, pp. 1–10. doi: 10.1029/2003GB002046.
- Gilhespy S.L., Anthony S., Cardenas L., Chadwick D., del Prado A., Li C., Misselbrook T., Rees R.M., Salas W., Sanz-Cobena A., Smith P., Tilston E.L., Topp C.F.E., Vetter S., Yeluripati J.B. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecol. Modell., 2014, vol. 292, pp. 51–62. doi: 10.1016/j.ecolmodel.2014.09.004.
- Ceglar A., Kajfež-Bogataj L.Simulation of maize yield in current and changed climatic conditions: Addressing modelling uncertainties and the importance of bias correction in climate model simulations. Eur. J. Agron., 2012, vol. 37, no. 1, pp. 83–95. doi: 10.1016/j.eja.2011.11.005.
- Tazhibayeva K., Townsend R. The Impact of Climate Change on Rice Yields: Heterogeneity and Uncertainty: Working Paper. Cambridge, 2012. 47 p. Available at: http://www.robertmtownsend.net/ sites/default/files/files/papers/working_papers/ImpactofClimateChangeonRiceYieldsDec2012.pdf.
- Sukhoveeva O.E., Karelin D.V. Parametrization of the DNDC model for evaluating components of the carbon biogeochemical cycle in the European part of Russia. Vestn. S.-Peterb. Univ. Nauki Zemle, 2019, vol. 64, no. 2, pp. 363–384. doi: 10.21638/spbu07.2019.211. (In Russian)
- Müller C., Bondeau A., Popp A., Waha K., Fader M. Climate Change Impacts on Agricultural Yields: Background Note to the World Development Report. Washington, DC, World Bank, 2010. 12 p. Available at: https://openknowledge.worldbank.org/handle/10986/9065.
- Cantelaube P., Terres J.M. Seasonal weather forecasts for crop yield modeling in Europe. Tellus, 2005, vol. 57, no. 3, pp. 476–487.
- Oettli P., Sultan B., Baron C., Vrac M. Are regional climate models relevant for crop yield prediction in West Africa? Environ. Res. Lett., 2011, vol. 6, no. 1, art. 014008, pp. 1–9. doi: 10.1088/1748-9326/6/1/014008.
- Sukhoveeva O.E. Evaluation of spatiotemporal variability of CO2 fluxes in agrolandscapes of the European Russia using simulation modelling. Extended Abstract of Cand. Geogr. Sci. Diss. Moscow, 2018. 27 p. (In Russian)
- Zamolodchikov D.G., Karelin D.V., Gitarskii M.L., Blinov V.G. (Eds.) Monitoring potokov parnikovykh gazov v prirodnykh ekosistemakh [Monitoring Greenhouse Gases Fluxes in Natural Ecosystems]. Saratov, Amirit, 2017. 279 p. (In Russian)
- Tarko A.M. Antropogennye izmeneniya global’nykh biosfernykh protsessov. Matematicheskoe modelirovanie [Anthropogenic Changes in Global Biospheric Processes. Mathematical Modelling]. Moscow, Fizmatlit, 2005. 232 p. (In Russian)
- Davidson Е.А., Janssens I.A., Luo Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biol., 2006, vol. 12, no. 2, pp. 154–164. doi: 10.1111/j.1365-2486.2005.01065.x.
- Alekseeva A.A., Fomina N.V. Analysis of the reducing enzyme activity of agrogenically disturbed soils in the nursery forests of the forest-steppe zone of the Krasnoyarsk region. Vestn. Krasnoyarsk. Gos. Agrar. Univ., 2015, no. 1, pр. 32–35. (In Russian)
- Kirschbaum M.U.F., Mueller R. Net Ecosystem Exchange. Australia, Coop. Res. Cent. Greenhouse Account., 2001. 139 p.
- Zadorozhnyi A.N., Semenov M.V., Khodzhaeva A.K., Semenov V.M. Soil processes of production, consumption, and emission of greenhouse gases. Agrokhimiya, 2010, no. 10, pp. 75–92. (In Russian)
- WMO Greenhouse Gas Bulletin. WMO, 2012, no. 8: The state of greenhouse gases in the atmosphere based on global observations through 2011. 8 p.
- Khain V.E., Khalilov E.N. Global’nye izmeneniya klimata i tsiklichnost’ vulkanicheskoi aktivnosti [Global Climate Changes and Volcanic Activity Cycles]. Burgas, Bulgaria, SWB, 2008. 301 p. (In Russian)
- WMO Greenhouse Gas Bulletin. WMO, 2011, no. 7: The state of greenhouse gases in the atmosphere based on global observations through 2010. 8p.
- WMO Greenhouse Gas Bulletin. WMO, 2018, no. 14: The state of greenhouse gases in the atmosphere based on global observations through 2017. 8 p.
For other references see (total number of references: 148)
The content is available under the license Creative Commons Attribution 4.0 License.