Zavarzin G.A., Vasil’eva L.V. Methane cycle in the territory of Russia. In: Laverov N.P., Zavarzin G.A. (Eds.) Krugovorot ugleroda na territorii Rossii [Carbon Cycle in the Territory of Russia]. Moscow, 1999, pp. 202–230. (In Russian)
Glagolev М.V. Annotated list of literature sources on the results of CH4 and CO2 flux measurements in Russian marshlands. Din. Okruzh. Sredy Global’nye Izmen. Klim., 2010, vol. 1, no. 2, pp. 1–53. (In Russian)
Miltner A., Kopinke F.D., Kindler R., Selesi D., Hartmann A., Kästner M. Non-phototrophic CO2 fixation by soil microorganisms. Plant Soil, 2005, vol. 269, nos. 1–2, pp. 193–203. doi: 10.1007/s11104-004-0483-1.
Šantrůčková H., Bird M.I., Elhottová D., Novák J., 31. Picek T., Šimek M., Tykva R. Heterotrophic fixation of CO2 in soil. Microb. Ecol., 2005, vol. 49, no. 2, pp. 218–225.
Smagin A.V. The gas function of soils. Eurasian Soil Sci., 2000, vol. 33, no. 10, pp. 1061–1071.
Shimmel S.M. Dark fixation of carbon dioxide in an agricultural soil. Soil Sci., 1987, vol. 144, no. 1, pp. 20–23.
Abohassan R.A. Carbon dynamics in a temperate agroforestry system in Southern Ontario, Canada. PhD Thesis. Guelph, Canada, Univ. of Guelph, 2004. 122 p.
Le Mer J., Roger P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol., 2001, vol. 37, no. 1, pp. 25–50. doi: 10.1016/S1164-5563(01)01067-6.
Kammann C., Hepp S., Lenhart K., Müller C. Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biol. Biochem., 2009, vol. 41, no. 3, pp. 622–629. doi: 10.1016/j.soilbio.2008.12.025.
Eliseev A.V., Mokhov I.I. Carbon cycle – climate feedback sensitivity to parameter changes of a zero-dimensional terrestrial carbon cycle scheme in a climate model of intermediate complexity. Theor. Appl. Climatol., 2007, vol. 89, nos. 1–2, p. 9–24. doi: 10.1007/s00704-006-0260-6.
McGuire A.D., Sitch S., Clein J.S., Dargaville R., Esser G., Foley J., Heimann M., Joos F., Kaplan J., Kicklighter D.W., Meier R.A., Melillo J.M., Moore III B., Prentice I.C., Ramankutty N., Reichenau T., Schloss A., Tian H., Williams L.J., Wittenberg U. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, vol. 15, pp. 183–206. doi: 10.1029/2000GB001298.
Zavalishin N.N. Dynamic compartment approach for modeling regimes of carbon cycle functioning in bog ecosystems. Ecol. Modell., 2008, vol. 213, no. 1, pp. 16–32. doi: 10.1016/j.ecolmodel.2007.12.006.
Komarov A.S., Priputina I.V., Mikhailov A.V., Chertov O.G. Carbon biogeochemical cycle in forest ecosystems of the central part of European Russia and its anthropogenic changes. In: Pochvennye protsessy i prostranstvenno-vremennaya organizatsiya pochv [Soil Processes and Spatiotemporal Organization of Soils]. Kudeyarov V.N. (Ed.). Moscow, Nauka, 2006. pp. 362–377. (In Russian)
Golubyatnikov L.L., Mokhov I.I., Eliseev A.V. Nitrogen cycle in the earth climatic system and its modeling. Izv., Atmos. Oceanic Phys., 2013, vol. 49, no. 3, pp. 229–243. doi: 10.1134/S0001433813030079.
Elzen M.G.J., Beusen A.H.W., Rotmans J. An integrated modeling approach to global carbon and nitrogen cycles: Balancing their budgets. Global Biogeochem. Cycles, 1997, vol. 11, no. 2, pp. 191–215. doi: 10.1029/96GB03938.
Bazilevich N.I., Titlyanova A.A. Bioticheskii krugovorot na pyati kontinentakh: azot i zol’nye elementy v prirodnykh nazemnykh ekosistemakh [Biotic Turnover on Five Continents: Nitrogen and Ash Elements in Natural Terrestrial Ecosystems]. Novosibirsk, Izd. Sib. Otd. Ross. Akad. Nauk, 2008. 381 p. (In Russian)
Thornton P.E., Lamarque J.F., Rosenbloom N.A., Mahowald N.M. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem. Cycles, 2007, vol. 21, no. 4, art. GB4018, pp. 1–15. doi: 10.1029/2006GB002868.
Gerber S., Hedin L.O., Oppenheimer M., Pacala S.W., Shevliakova E. Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochem. Cycles, 2010, vol. 24, no. 1, art. GB1001, pp. 1–15. doi: 10.1029/2008GB003336.
Jain A., Yang X., Kheshgi H., McGuire A.D., Post W., Kicklighter D. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Global Biogeochem. Cycles, 2009, vol. 23, no. 4, art. GB4028, pp. 1–13. doi: 10.1029/2009GB003474.
Thornton P.E., Doney S.C., Lindsay K., Moore J.K., Mahowald N., Randerson J.T., Fung I., Lamarque J.F., Feddema J.J., Lee Y.H. Carbon-nitrogen interactions regulate climate–carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. Biogeosciences, 2009, vol. 6, no. 10, pp. 2099–2120. doi: 10.5194/bg-6-2099-2009.
Titlyanova A.A., Chuprova V.V. Changes in the carbon cycle as related to different land use practices (case studies in Krasnoyarsk region). Eurasian Soil Sci., 2003, vol. 36, no. 2, pp. 201–208.
Ganzhara N.F., Borisov B.A. Gumusoobrazovanie i agronomicheskaya otsenka organicheskogo veshchestva pochv [Humus Formation and Agronomic Assessment of Soil Organic Matter]. Moscow, Agrokonsalt, 1997. 82 p. (In Russian)
Gougoulias C., Clark J.M., Shaw L.J. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric., 2014, vol. 94, no. 12, pp. 2362–2371. doi: 10.1002/jsfa.6577.
Lopes de Gerenyu V.O., Kurganova I.N., Ermolaev A.M., Kuzyakov Ya.V. Changes in soil organic carbon pools during the self-restoration of arable soils. Agrokhimiya, 2009, no. 5, pp. 5–12. (In Russian)
Degtyarev V.V., Panasenko O.S., Nedbaev V.N. Content of humus colloidal particles in structural aggregates of chernozems typical for different forest-steppe conditions of Ukraine. Vestn. Kursk. Gos. S-kh. Akad., 2013, no. 5, pp. 60–62. (In Russian)
Chuprova V.V. Mineralized pool of organic matter in agrochernozems of the southern part of Central Siberia. Vestn. Krasnoyarsk. Gos. Agrar. Univ., 2013, no. 9, pp. 83–89. (In Russian)
Sharkov I.N., Samokhvalova L.M., Mishina P.V., Shepelev A.G. Effect of crop residues on the organic matter composition of a leached chernozem in the Western Siberian forest-steppe. Eurasian Soil Sci., 2014, vol. 47, no. 4, pp. 304–309. doi: 10.1134/S1064229314040085.
Kuznetsova T.V., Udaltsov S.N., Demkin V.A. Active organic matter mineralization in modern and buried chestnut soils of the dry steppe zone. Vestn.Tambov. Univ. Ser. Estestv. Nauki, 2013, vol. 18, no. 3, pp. 978–981. (In Russian)
Kogut B.M., Yashin M.A., Semenov V.M., Avdeeva T.N., Markina L.G., Lukin S.M., Tarasov S.I. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil. Eurasian Soil Sci., 2016, vol. 49, no. 1, pp. 45–55. doi: 10.1134/S1064229316010075.
Tsybul’ko N.N., Shapsheеva T.P., Arastovich T.V., Zaitsev A.A. Mineralization capacity of organic matter in peat soils and 137Cs efflux into perennial grasses. Melioratsiya, 2010, no. 2, pp. 109–122. (In Russian)
Muller T., Hoper Н. Soil organic matter turnover as a function of the soil clay content: Consequences for model application. Soil Biol. Biochem., 2004, vol. 36, no. 6, pp. 877–888. doi: 10.1016/j.soilbio.2003.12.015.
Schwendenmann L., Pendal E. Response of organic matter dynamics to conversion from tropical forest to grassland as determined by long-term incubation. Biol. Fertil. Soils, 2008, vol. 44, no. 8, pp. 1053–1062. doi: 10.1007/s00374-008-0294-2.
Ivanov I.V., Pesochina L.S., Semenov V.M. Biological mineralization of organic matter in the modern virgin and plowed chernozems, buried chernozems, and fossil chernozems. Eurasian Soil Sci., 2009, vol. 42, no. 10, pp. 1109–1119. doi: 10.1134/S1064229309100056.
Bond-Lamberty B., Thompson A. Temperature associated increases in the global soil respiration record. Nature, 2010, vol. 464, pp. 579–582. doi: 10.1038/nature08930.
Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem., 2006, vol. 38, no. 3, p. 425–448. doi: 10.1016/j.soilbio.2005.08.020.
Luo Y., Zhou X. Soil Respiration and the Environment. Burlington, Acad. Press, 2006. 316 p.
Raich J.W., Potter C.S., Bhagawatti D. Interannual variability in global soil respiration, 1980-94. Global Change Biol., 2002, vol. 8, no. 8, pp. 800–812. doi: 10.1046/j.1365-2486.2002.00511.x.
Stepanov А.L. Mikrobnaya transformatsiya parnikovykh gazov v pochvakh [Microbial Transformation of Greenhouse Gases in Soils]. Moscow, GEOS, 2011. 192 p. (In Russian)
Bardgett R.D. Plant-soil interactions in a changing world. Biol. Rep., 2011, vol. 3, art. 16, pp. 1–6. doi: 10.3410/B3-16.
Larionova A.A., Sapronov D.V., Lopez de Gerenyu V.O., Kuznetsova L.G., Kudeyarov V.N. Contribution of plant root respiration to the CO2 emission from soil. Eurasian Soil Sci., 2006, vol. 39, no. 10, pp. 1127–1135. doi: 10.1134/S1064229306100103.
Zavarzin G.А., Kudeyarov V.N. Soil as the main source of carbon dioxide and a pool of organic carbon in the territory of Russia. Vestn. Ross. Аkad. Nauk, 2006, vol. 76, no. 1, pp. 14‒29 (In Russian)
Sapronov D.V., Kuzyakov Ya.V. Separation of root and microbial respiration: Comparison of three methods. Eurasian Soil Sci., 2007, vol. 40, no. 7, pp. 775‒784. doi: 10.1134/S1064229307070101.
Kuzyakov Ya.V., Larionova A.A. Contribution of rhizomicrobial and root respiration to the CO2 emission from soil (A review). Eurasian Soil Sci., 2006, vol. 39, no. 7, pp. 753–764. doi: 10.1134/S106422930607009X.
Kurganova I.N. Emission and balance of carbon dioxide in terrestrial ecosystems of Russia. Extended Abstract of Doct. Biol. Sci. Diss. Pushchino, 2010. 48 p. (In Russian)
Yevdokimov I.V., Larionova A.A., Lopes de Gerenyu V.O., Schmitt M., Bahn M. Determination of root and microbial contributions to the CO2 emission from soil by the substrate-induced respiration method. Eurasian Soil Sci., 2010, vol. 43, no. 3, pp. 321–327. doi: 10.1134/S1064229310030105.
Hanson P.J., Edwards N.T., Garten C.T., Andrews J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 2000, vol. 48, no. 1, pp. 115–146. doi: 10.1023/A:1006244819642.
Larionova A.A., Yevdokimov I.V., Kurganova I.N., Sapronov D.V., Kuznetsova L.G., Lopes de Gerenju V.O. Root respiration and its contribution to the CO2 emission from soil. Eurasian Soil Sci., 2003, vol. 36, no. 2, pp. 173–184.
Sun W.J., Huang Y., Chen S.T., Yang Z.F., Zheng X.H. CO2 emission from soil-crop system as influenced by crop growth and tissue N content. Huan Jing Ke Xue, 2004, vol. 25, no. 3, pp. 1–6. (In Chinese)
Swinnen J. Evaluation of the use of a model rhizodeposition technique to separate root and microbial respiration in soil. Plant Soil, 1994, vol. 165, no. 1, pp. 89–101. doi: 10.1007/BF00009966.
Sapronov D.V. Long-term dynamics of CO2 emission from gray forest and sod-podzolic soils. Extended Abstract of Cand. Biol. Sci. Diss. Pushchino, 2008. 20 p. (In Russian)
Helal H.M., Sauerbeck D. Short term determination of the actual respiration rate of intact plant roots. In: McMichal B.L., Person H. (Eds.) Plant Roots and Their Environment. Amsterdam, Elsevier, 1991. pp. 88–92.
Yevdokimov I.V., Ruser R., Buegger F., Marx M., Munch J.C. Carbon turnover in the rhizosphere under continuous plant labeling with 13CO2: Partitioning of root, microbial, and rhizomicrobial respiration. Eurasian Soil Sci., 2007, vol. 40, no. 9, pp. 969–977. doi: 10.1134/S1064229307090074.
Da Costa J.M.N. Respiratory releases of carbon dioxide by aerial parts and roots of field-grown alfalfa and soybeans. PhD Thesis. Lincoln, Univ. of Nebraska, 1983. 125 p.
Biasi C., Pitkämäki A.S., Tavi N.M., Koponen H.T., Martikainen P.J. An isotope approach based on 13C pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands. Boreal Environ. Res., 2012, vol. 17, nos. 3-4, pp. 184–192.
Orlova O.V. Active organic matter as a regulator of nitrogen and carbon transformation processes in sod-podzolic soils. Extended Abstract of Doct. Biol. Sci. Diss. St. Petersburg, 2013. 48 p. (In Russian)
Karelin D.V., Zamolodchikov D.G., Pochikalov A.V., Kaganov V.V., Gitarskii M.L. Microbial and root components of respiration of sod-podzolic soils in boreal forest. Contemp. Probl. Ecol., 2017, vol. 10, no. 7, pp. 717–727. doi: 10.1134/S199542551707006X.
Suleau M., Moureaux C., Dufranne D., Buysse P., Bodson B., Destain J.P., Heinesch B., Debacq A., Aubinet M. Respiration of three Belgian crops: Partitioning of total ecosystem respiration in its heterotrophic, above- and below-ground autotrophic components. Agric. For. Meteorol., 2011, vol. 151, no. 5, pp. 633–643. doi: 10.1016/j.agrformet.2011.01.012.
Sadras V.O., Calderini D. Crop Physiology: Application for Genetic Improvements and Agronomy. Burlington, MA, USA, Acad. Press, 2009. 581 p.