B.O. Volkov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 119991 Russia
Bauman Moscow State Technical University, Moscow, 105005 Russia
Abstract
The Lévy Laplacians are infinite-dimensional Laplace operators defined as the Cesaro mean of the second-order directional derivatives. In the theory of Sobolev–Schwarz distributions over a Gaussian measure on an infinite-dimensional space (the Hida calculus), we can consider two canonical Lévy Laplacians. The first Laplacian, the so-called classical Lévy Laplacian, has been well studied. The interest in the second Laplacian is due to its connection with the Malliavin calculus (the theory of Sobolev spaces over the Wiener measure) and the Yang–Mills gauge theory. The representation in the form of the quadratic function of the annihilation process for the classical Lévy-Laplacian is known. This representation can be obtained using the S-transform (the Segal–Bargmann transform). In the paper, we show, by analogy, that the representation in the form of the quadratic function of the derivative of the annihilation process exists for the second Lévy-Laplacian. The obtained representation can be used for studying the gauge fields and the Lévy Laplacian in the Malliavin calculus.
Keywords: Lévy Laplacian, Hida calculus, quantum probability, annihilation process
References
1. Lévy P. Problèmes concrets d'analyse fonctionnelle. Paris, Gautier-Villars, 1951. 498 p. (In French)
2. Kuo H.-H., Obata N., Sait K. Lévy-Laplacian of generalized functions on a nuclear space. J. Funct. Anal., 1990, vol. 94, no. 1, pp. 74–92. doi: 10.1016/0022-1236(90)90028-J.
3. Accardi L., Smolyanov O.G. On Laplacians and traces. Conferenze del Seminario di Matematica dell'Universit'a di Bari. 1993, vol. 250, pp. 1–25.
4. Volkov B. O. Lévy Laplacians in Hida calculus and Malliavin calculus. Proc. Steklov Inst. Math., 2018, vol. 301, no. 1, pp. 11–24. doi: 10.1134/S0081543818040028.
5. Accardi L., Smolyanov O.G., Classical and nonclassical Lévy Laplacians, Dokl. Math., 2007, vol. 76, no. 3, pp. 801–805. doi: 10.1134/S1064562407060014.
6. Volkov B.O. Hierarchy of Lévy-Laplacians and quantum stochastic processes. Infinite. Dimens. Anal. Quantum Probab. Relat. Top., 2013, vol. 16, no. 4, art. 1350027, pp. 1–20. doi: 10.1142/S0219025713500276.
7. Kuo H.-H. White Noise Distribution Theory. Kluwer Acad. Publ, 1996. 400 p.
8. Hida T., Si S. Lectures on White Noise Functionals. Kluwer Acad. Publ., 2008. 280 p. doi: 10.1142/5664.
9. Accardi L., Lu Y.-G., Volovich I.V. Nonlinear extensions of classical and quantum stochastic calculus and essentially infinite dimensional analysis. In: Accardi L., Heyde C.C. (Eds.) Probability Towards 2000. Lecture Notes in Statistics. New York, Springer, 1998, vol. 128, pp. 1–33. doi: 10.1007/978-1-4612-2224-8_1.
10. Accardi L., Smolyanov O.G. Representations of Lévy Laplacians and related semigroups and harmonic functions. Dokl. Math., 2002, vol. 65, pp. 356–362.
11. Accardi L., Smolyanov O.G. Generalized Lévy Laplacians and Cesáro means. Dokl. Math., 2009, vol. 79, pp. 90–93.
12. Accardi L., Gibilisco P., Volovich I.V. Yang–Mills gauge fields as harmonic functions for the Lévy-Laplacian. Russ. J. Math. Phys., 1994, vol. 2, no. 2, pp. 235–250.
13. Leandre R., Volovich I.V. The stochastic Lévy Laplacian and Yang–Mills equation on manifolds. Infinite Dimens. Anal. Quantum Probab. Relat. Top., 2001, vol. 4, no. 2, pp. 151–172. doi: 10.1142/S0219025701000449.
14. Volkov B.O. Lévy Laplacians and instantons. Proc. Steklov Inst. Math., 2015, vol. 290, no. 1, pp. 210–222. doi: 10.1134/S008154381506019X.
15. Volkov B.O. Lévy differential operators and gauge invariant equations for Dirac and Higgs fields. arXiv:1612.00310, 2016, pp. 1–19.
16. Volkov B.O. Stochastic Lévy differential operators and Yang–Mills equations. Infinite Dimens. Anal. Quantum Probab. Relat. Top., 2017, vol. 20, no. 2, art. 1750008, pp. 1–23. doi: 10.1142/S0219025717500084.
17. Obata N. White noise calculus and Fock space. In: Lecture Notes in Mathematics. Vol. 1577. Springer, 1994. x, 190 p. doi: 10.1007/BFb0073952.
18. Hida T., Kuo H.-H., Potthoff J., Streit L. White Noise: An Infinite Dimensional Calculus. Springer Netherlands, 1993. xiv, 520 p. doi: 10.1007/978-94-017-3680-0.
19. Obata N. Quadratic quantum white noises and Lévy-Laplacians. Nonlinear Anal.-Theory Methods Appl., 2001, vol. 47, pp. 2437–2448.
20. Obama N. Integral kernel operators on Fock space – generalizations and applications to quantum dynamics. Acta Appl. Math., 1997, vol. 47, no. 1, pp. 49–77. doi: 10.1023/A:1005777929658.
21. Accardi L., Lu Y.-G., Volovich I.V. Quantum Theory and Its Stochastic Limit. Berlin, Springer Verlag, 2002, XX, 474 p. doi: 10.1007/978-3-662-04929-7.
22. Volovich I.V., Kozyrev S.V. Manipulation of states of a degenerate quantum system. Proc. Steklov Inst. Math., 2016, vol. 294, no. 1, pp. 241–251. doi: 10.1134/S008154381606016X.
23. Trushechkin A.S., Volovich I.V. Perturbative treatment of inter-site couplings in the local description of open quantum networks. EPL, 2016, vol. 113, art. 30005, pp. p1–p6. doi: 10.1209/0295-5075/113/30005.
24. Arnaudon M., Bauer R.O., Thalmaier A. A probabilistic approach to the Yang–Mills heat equation. J. Math. Pures Appl., 2002, vol. 81, no. 2, pp. 143–166. doi: 10.1016/S0021-7824(02)01254-0.
25. Marchuk N.G., Shirokov D.S. General solutions of one class of field equations. Rep. Math. Phys., 2016, vol. 78, no. 3, pp. 305–326. doi: 10.1016/S0034-4877(17)30011-3.
26. Zharinov V.V. Backlund transformations. Theor. Math. Phys., 2016, vol. 189, no. 3, pp. 1681–1692.
27. Katanaev M.O. Killing vector fields and a homogeneous isotropic universe. Phys.-Usp., 2016, vol. 59, no. 7, pp. 689–700. doi: 10.3367/UFNe.2016.05.037808.
Recieved
December 19, 2017
For citation: Volkov B.O. Lévy laplacians and annihilation process. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 2, pp. 399–409.
The content is available under the license Creative Commons Attribution 4.0 License.