L.R. Abdrazakova*, D.I. Kamalova**
Kazan Federal University, Kazan, 420008 Russia
E-mail: *Dina.Kamalova@kpfu.ru, **leysan342@gmail.com
Received November 27, 2017
Abstract
We have used FTIR spectroscopy of conformationally inhomogeneous probes to study the influence of supercritical carbon dioxide on the local molecular dynamics in the blends of polyvinyl butyral and polyethylene glycol with the following compositions: 80:20, 60:40, 40:60, and 20:80. The temperatures of secondary relaxation transitions in these blends after the processing by supercritical carbon dioxide have been determined.
Keywords: supercritical carbon dioxide, secondary relaxation transitions, polymer blend
Acknowledgments. We are grateful to Professor F.M. Gumerov (Kazan National Research Technological University) for processing of polymer blends by supercritical carbon dioxide.
Figure Captions
Fig. 1. FTIR spectra of the polymer PVB and PEG blends before sc-CO2 processing for the following compositions: 80:20 (a), 60:40 (b), 40:60 (c), and 20:80 (d) at room temperature.
Fig. 2. FTIR spectra of the polymer PVB and PEG blends after sc-CO2 processing for the following compositions: 80:20 (a), 60:40 (b), 40:60 (c), and 20:80 (d) at room temperature.
Fig. 3. FTIR spectrum fragments of the TBE probe in PVB + PEG mixture (80:20) after sc-CO2 processing at the following temperatures: 298 K (a), 201 K (b), and 103 K (c).
Fig. 4. ln (Dtrans / Dgauche) dependence on 1/T for the EDC probe in PVB + PEG mixtures after sc-CO2 processing for the following compositions: 80:20 (a), 60:40 (b), 40:60 (c), and 20:80 (d).
Fig. 5. ln (Dtrans / Dgauche) dependence on 1/T for the TCE probe in PVB + PEG mixtures after sc-CO2 processing for the following compositions: 80:20 (a), 60:40 (b), 40:60 (c), and 20:80 (d).
Fig. 6. ln (Dtrans / Dgauche) dependence on 1/T for the TBE probe in PVB + PEG mixtures after sc-CO2 processing for the following compositions: 80:20 (a), 60:40 (b), 40:60 (c), and 20:80 (d).
References
1. Paul D.R., Newman S. Polymer Blends. Vol. 1. New York, San Francisco, London, Acad. Press, 1978. 501 p.
2. Zhang P.Y., Wang Y.L., Xu Z.L., Yang H. Preparation of poly (vinyl butyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive. Desalination, 2011, vol. 278, nos. 1–3, pp. 186–193. doi: 10.1016/j.desal.2011.05.026.
3. Yan L., Wang J. Development of new polymer membrane – PVB/PVDF blended membrane. Desalination, 2011, vol. 281, pp. 455–461. doi: 10.1016/j.desal.2011.08.024.
4. Kamalova D.I., Remizov A.B., Salakhov M.Kh. Konformatsionnye zondy v izuchenii lokal'noi podvizhnosti polimerov [Conformational Probes in the Study of Local Mobility of Polymers]. Moscow, Fizmatkniga, 2008. 160 p. (In Russian)
5. Gumerov F.M., Sabirzyanov A.N., Gumerova G.I. Sub- i sverkhkriticheskie flyuidy v protsessakh pererabotki polimerov [Sub- and Supercritical Fluids in Polymer Processing]. Kazan, FEN, 2007. 336 p. (In Russian)
6. Kamalova D.I., Shaimukhametova E.R., Salakhov M.Kh. Combination of the method of conformational probes and the genetic algorithm for analysis of secondary relaxation transitions in polyvinylbutyral. Uchenye Zapiski Kazanskogo Universiteta. Seriya fiziko-Matematicheskie Nauki, 2013, vol. 155, no. 1, pp. 78–84. (In Russian)
7. Kamalova D.I., Remizov A.B., Shaimukhametova E.R., Gumerov F.M., Gabitov F.R. The effect of supercritical carbon dioxide on secondary relaxation transitions in polysulfone and polycarbonate: The method of conformational probes. Russ. J. Phys. Chem. B, 2013, vol. 7, no. 8, pp. 950–954. doi: 10.1134/S1990793113080046.
8. Kamalova D.I., Kolyadko I.M., Remizov A.B. A study of local crankshaft-type mobility in vitreous polyvinyl chloride and polyacrylonitrile by the method of conformational probes. Russ. J. Phys. Chem. A, 2009, vol. 83, no. 13, pp. 2278–2282. doi: 10.1134/S0036024409130160.
For citation: Abdrazakova L.R., Kamalova D.I. Temperatures of secondary relaxation transitions of binary polymer blends processed by supercritical carbon dioxide. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 1, pp. 42–50. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.