I.M. Fitsev a*, E.N. Nikitin b**, A.M. Rakhmaeva b***, D.A. Terenzhev b****, T.M. Sakhno c******, Z.R. Nasybullina a******
aFederal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia
bFederal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”,Kazan, 420111 Russia
cNikitsky Botanical Garden – National Scientific Center of the Russian Academy of Sciences, Yalta, 298648 Russia
E-mail: *fitzev@mail.ru, **enikitin@knc.ru, ***ermakowa.adelya@yandex.ru, ****Dmitriy.terenzhev@mail.ru, *****sahno_tanya@mail.ru, *****vnivi@mail.ru
Received May 13, 2022
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.3.392-407
For citation: Fitsev I.M., Nikitin E.N., Rakhmaeva A.M., Terenzhev D.A., Sakhno T.M., Nasybullina Z.R. Chemical composition of Cupressus sempervirens L. and Thuja occidentalis L. essential oils and their activity against phytopathogenic fungi. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 3, pp. 392–407. doi: 10.26907/2542-064X.2022.3.392-407. (In Russian)
Abstract
This article presents the results of a gas chromatography-mass spectrometry (GC-MS) study of the chemical composition of Cupressus sempervirens L. (Mediterranean cypress) and Thuja occidentalis L. (northern white-cedar) essential oils, as well as their activity against four strains of pathogenic fungi infecting crops. Our observations revealed high concentrations of monoterpenes, sesquiterpenes, monoteppernic and sesquitepernic alcohols, ethers and esters, and flavonoids in the essential oil samples of both plants. Notably, the growth of pathogens was significantly inhibited by α-pinene (44.73% for C. sempervirens and 27.74% for T. occidentalis) and α-terpineol (4.04% and 5.14%, respectively) found at high levels. The selective effect exerted by all the compounds on the strains of the phytopathogenic fungi tested was established. C. sempervirens L. essential oil displayed the highest antifungal activity against fusarial wilt (Fusarium graminearum FG-30) and snow mold (Microdochium nivale) pathogens.
Keywords: essential oil, Cupressus sempervirens L., Thuja occidentalis L., gas chromatography-mass spectrometry, biologically active substances, fungicidal activity, fungistatic activity, phytopathogenic fungi
References
- Decree of the President of the Russian Federation no. 97 of March 11, 2019 “On basic principles of the state policy of the Russian Federation in ensuring the chemical and biological safety for the period up to 2025 and further”. Collection of Legislative Acts of the Russian Federation, 2019, no. 11, art. 1106, pp. 4021–4034. (In Russian)
- Decree of the President of the Russian Federation no. 642 of December 1, 2016 “On the strategy of scientific and technological development of the Russian Federation”. Collection of Legislative Acts of the Russian Federation, 2016, no. 49, art. 6887, pp.16747–16760. (In Russian)
- Avery S.V., Singleton I., Magan N., Goldman G.H. The fungal threat to global food security. Fungal Biol., 2019, vol. 123, no. 8, pp. 555–557. doi: 10.1016/j.funbio.2019.03.006.
- Fones H.N., Bebber D.P., Chaloner T.M., Kay W.T., Steinber G., Gurr S.J. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food, 2020, vol. 1, pp. 332–342. doi: 10.1038/s43016-020-0075-0.
- Fisher M.C., Henk D.A., Briggs C.J., Brownstein J.S., Madoff L.C., McCraw S.L., Gurr S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012, vol. 488, no. 7393, pр. 186–194. doi: 10.1038/nature10947.
- Savary S., Ficke A., Aubertot J.-N. Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur., 2012, vol. 4, pp. 519–537. doi: 10.1007/s12571-012-0200-5.
- Gavrilova O.P., Orina A.S., Gagkaeva T.Yu., Usol’tseva M.Yu. The effectiveness of using fungicides to inhibit growth in the snow mold-causing fungus Microdochium sp. Zashch. Karantin Rast., 2021, no. 4, pp. 17–20. doi: 10.47528/1026-8634_2021_4_17. (In Russian)
- Orina A.S., Gagkaeva T.Yu., Gavrilova O.P., Usol’tseva M.Yu. Effect of fungicides on the growth of fungi causing snow mold of cereals. Agrokhimiya, 2021, no. 5, pp. 52–61. doi: 10.31857/S0002188121050094. (In Russian)
- Shcherbakova L.A. Fungicide resistance of plant pathogenic fungi and their chemosensitization as a tool to increase anti-disease effects of triazoles and strobilurines. S-kh. Biol., 2019, vol. 54, no. 5, pp. 875–891. doi: 10.15389/agrobiology.2019.5.875rus. (In Russian)
- Nasonov A.I., Yakuba G.V., Astapchuk I.L. Sensitivity of the Krasnodar population of Venturia inaequalis to difenoconazole, an inhibitor of sterol demethylation. Mikol. Fitopatol., 2021, vol. 55, no. 4, pp. 297–308. doi: 10.31857/S0026364821040103. (In Russian)
- Lindsey A.P.J., Murugan S., Renitta R.E. Microbial disease management in agriculture: Current status and future prospects. Biocatal. Agric. Biotechnol., 2020, vol. 23, art. 101468, pp. 1–4. doi: 10.1016/j.bcab.2019.101468.
- Lengai G.M.W., Muthomi J.W., Mbega E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr., 2020, vol. 7, art. e00239, pp. 1–13. doi: 10.1016/j.sciaf.2019.e00239.
- Mar’in A.A., Kolomiets N.E. Medicinal plants and biologically active substances with antifungal properties. Fundam. Klin. Med., 2017, vol. 2, no. 4, pp. 45–55. doi: 10.23946/2500-0764-2017-2-4-45-55. (In Russian)
- Sarikurkcu C., Sabih Ozer M., Eskici M., Tepe B., Can Ş., Mete E. Essential oil composition and antioxidant activity of Thymus longicaulis C. Presl subsp. longicaulis var. longicaulis. Food Chem. Toxicol., 2010, vol. 48, no. 7, pp. 1801–1805. doi: 10.1016/j.fct.2010.04.009.
- Arif T., Bhosale J.D., Kumar N., Mandal T.K., Bendre R.S., Lavekar G.S., Dabur R. Natural products – antifungal agents derived from plants. J. Asian Nat. Prod. Res., 2009, vol. 11, no. 7, pp. 621–638. doi: 10.1080/10286020902942350.
- Abad M.J., Ansuategi M., Bermejo P. Active antifungal substances from natural sources. ARKIVOC, 2006, vol. 2007, no. 7, pp. 116–145. doi: 10.3998/ark.5550190.0008.711.
- K’osev P.A. Russkii travnik: Opisanie i primenenie lekarstvennykh rastenii [Russian Herbal: Description and Use of Medicinal Plants]. Moscow, Eksmo, 2015. 896 p. (In Russian)
- Sellar W. Entsiklopediya efirnykh masel [The Directory of Essential Oils]. Moscow, Grand-Fair, 2005. 400 p. (In Russian)
- Lapko I.V., Aksenova Yu.B., Kuznetsova O.V., Vasilevskii S.V., Aksenov A.V., Taranchenko V.F., Antokhin A.M., Ihalajnen A.A. Essential oils: Methods for determining the authenticity and detecting adulteration. Anal. Kontrol’, 2019, vol. 23, no. 4, pp. 444–475. doi: 10.15826/analitika.2019.23.4.010. (In Russian)
- Gupta M., Sharma K. A review of phyto-chemical constituent and pharmacological activity of Thuja species. Int. J. Pharm. Res. Appl., 2021, vol. 6, no. 1, pp. 85–95. doi: 10.35629/7781-06018595.
- State Standard 17082.5-88. Fruits of essential oil-bearing crops. Industrial raw material. Methods for the determination of the mass fraction of essential oil. Moscow, Izd. Stand., 1989. 13 p. (In Russian)
- Gorshkov V., Osipova E., Ponomareva M., Ponomarev S., Gogoleva N., Petrova O., Gogoleva O., Meshcherov A., Balkin A., Vetchinkina E., Potapov K., Gogolev Y., Korzun V. Rye snow mold-associated Microdochium nivale strains inhabiting a common area: Variability in genetics, morphotype, extracellular enzymatic activities, and virulence. Fungi, 2020, vol. 6, no. 4, art. 335, pp. 1–35. doi: 10.3390/jof6040335.
- Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. CLSI Standard M07. Wayne, PA, Clin. Lab. Stand. Inst., 2018. 112 p.
- Reference method for broth dilution antifungal susceptibility testing of yeasts. 4th ed. CLSI Standard M27. Wayne, PA, Clin. Lab. Stand. Inst., 2017. 31 p.
- Rakhmaeva A.M., Gumerova S.M., Terenzhev D.A., Sharonova N.L., Fitsev I.M. Antimicrobial activity and phytotoxicity of extracts of some species of the genus Centaurea. Vestn. Kazan. Gos. Agrar. Univ., 2020, no. 3, pp. 37–42. doi: 10.12737/2073-0462-2020-37-42. (In Russian)
- State Standard 8.736-2011. State system for ensuring uniform measurement (SSM). Multiple direct measurements. Methods for processing the results of measurements. Main principles. Moscow, Standartinform, 2013. 23 p. (In Russian)
- State Standard 34100.1-2017. Uncertainty of measurement. Introduction to guides on the expression of uncertainty in measurement. Moscow, Standartinform, 2018. 28 p. (In Russian)
- Tongnuanchan P., Benjakul S. Essential oils: Extraction, bioactivities, and their uses for food preservation. Food Sci., 2014, vol. 79, no. 7, pp. R1231–R1249. doi: 10.1111/1750-3841.12492.
- Santoyo S., Cavero S., Jaime J., Ibañez E., Señoráns F.J., Reglero G. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. essential oil obtained via supercritical fluid extraction. J. Food Prot., 2005, vol. 68, no. 4, pp. 790–795. doi: 10.4315/0362-028X-68.4.790.
- Señoráns F.J., Ibañez E., Cavero S., Tabera J., Reglero G. Liquid chromatographic-mass spectrometric analysis of supercritical-fluid extracts of rosemary plants. J. Chromatogr. A, 2000, vol. 870, nos. 1–2, pp. 491–499. doi: 10.1016/s0021-9673(99)00941-3.
- Wang Y., Li X., Jiang Q., Sun H., Jiang J., Chen S., Guan Z., Fang W., Chen F. GC-MS analysis of the volatile constituents in the leaves of 14 compositae plants. Molecules, 2018, vol. 23, no. 1, art. 166, pp. 1–12. doi: 10.3390/molecules23010166.
- Sharonova N., Nikitin E., Terenzhev D., Lyubina A., Amerhanova S., Bushmeleva K., Rakhmaeva A., Fitsev I., Sinyashin K. Comparative assessment of the phytochemical composition and biological activity of extracts of flowering plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. Plants, 2021, vol. 10, no. 7, art. 1279, pp. 1–19. doi: 10.3390/plants10071279.
- Álvarez-Martínez F.J., Barrajón-Catalán E., Herranz-Lopez M., Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 2021, vol. 90, art. 153626, pp. 1–16. doi: 10.1016/j.phymed.2021.153626.
- Van Vuuren S., Holl D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol., 2017, vol. 208, pp. 236–252. doi: 10.1016/j.jep.2017.07.011.
- Rguez S., Djébali N., Slimene I.B., Abid G., Hammemi M., Chenenaoui S., Bachkouel S., Daami-Remadi M., Ksouri R., Hamrouni-Sellami I. Cupressus sempervirens essential oils and their major compounds successfully control postharvest grey mould disease of tomato. Ind. Crops Prod., 2018, vol. 123, pp. 135–141. doi: 10.1016/j.indcrop.2018.06.060.
- Espinosa-García F.J., Langenheim J.H. Effects of sabinene and γ-terpinene from coastal redwood leaves acting singly or in mixtures on the growth of some of their fungus endophytes. Biochem. Syst. Ecol., 1991, vol. 19, no. 8, pp. 643–650. doi: 10.1016/0305-1978(91)90080-J.
- Badr M.M., Badawy M.E.I., Taktak N.E.M. Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. J. Drug. Delivery Sci. Technol., 2021, vol. 65, art. 102732, pp. 1–11. doi: 10.1016/j.jddst.2021.102732.
- An P., Yang X., Yu J., Qi J., Ren X., Kong Q. α-Terpineol and terpene-4-ol, the critical components of tea tree oil, exert antifungal activities in vitro and in vivo against Aspergillus niger in grapes by inducing morphous damage and metabolic changes of fungus. Food Control, 2019, vol. 98, pp. 42– 53. doi: 10.1016/j.foodcont.2018.11.013.
- Stefanova G., Girova T., Gochev V., Stoyanova M., Petkova Z., Stoyanova A., Zheljazkov V.D. Comparative study on the chemical composition of laurel (Laurus nobilis L.) leaves from Greece and Georgia and the antibacterial activity of their essential oil. Heliyon, 2020, vol. 6, no. 12, art. E05491, pp. 1–6. doi: 10.1016/j.heliyon.2020.e05491.
The content is available under the license Creative Commons Attribution 4.0 License.