A.R. Kuluev*, B.R. Kuluev**, A.V. Chemeris***
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054 Russia
E-mail: *kuluev.azat@yandex.ru, **kuluev@bk.ru, ***chemeris@anrb.ru
Received March 14, 2022
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.3.378-391
For citation: Kuluev A.R., Kuluev B.R., Chemeris A.V. Chemical mutagenesis of Triticum sinskajae A. Filat. et Kurk. using sodium azide. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 3, pp. 378–391. doi: 10.26907/2542-064X.2022.3.378-391. (In Russian)
Abstract
This article explores sodium azide-induced mutagenesis in Triticum sinskajae cultivated in a test plot within the limits and suburbs of Ufa. The seeds of this diploid wheat were soaked in 0.1–0.6 mM sodium azide solutions in phosphate buffer (pH 3), the control group was not treated with any dosage. The mutagenic effect was assessed by the morphometric changes in the obtained plants during their vegetation and fruiting. The genetic polymorphism of the mutant forms was identified using the ISSR analysis. With regard to the rates of seed germination and subsequent plant growth, the effective concentration of sodium azide for treating T. sinskajae was determined – 0.1 mM. The plants developed various morphological alternations in response to sodium azide: longer and shorter stems or spikes at low and high concentrations, respectively. No significant differences were found in the leaf length and 1000-grain weight between the mutant and wild types of plants. It was concluded that ISSR analysis is a promising diagnostic approach to assess the general mutagenic effect of chemical agents on the genome. Following on from the results of the survey, 78 mutant forms of T. sinskajae with short stems over a number of generations were selected.
Keywords: Triticum sinskajae, mutation, sodium azide, ISSR analysis, genetic polymorphism, diploid wheat, breeding
Acknowledgements. A.R. Kuluev’s research was performed as part of state assignment no. 122030200143-8, and B.R. Kuluev’s work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1066 of September 28, 2021).
Figure Captions
Fig. 1. The graph showing the dependence of seed germination in T. sinskajae on the concentration of sodium azide.
Fig. 2. The morphometric analysis of the first generation of T. sinskajae (M1, 2018) after mutagenesis. a) The stem length of the control and experimental (mutant) plants: 1 – short morphotype (control), 2 – short morphotype (М1), 3 – long morphotype (control), 4 – long morphotype (М1). b) The spike length of the control and experimental plants: 1 – long morphotype (control), 2 – long morphotype (М1), 3 – short morphotype (control), 4 – short morphotype (М1). n = 100; * p < 0.01.
Fig. 3. The leaf length of control (light gray columns) and experimental (grey columns) plants of T. sinskajae M1 (2018). 1 – first leaf, long morphotype (control); 2 – first leaf, long morphotype (М1); 3 – second leaf, long morphotype (control); 4 – second leaf, long morphotype (М1); 5 – first leaf, short morphotype (control); 6 – first leaf, short morphotype (М1) 7 – second leaf, short morphotype (control); 8 – second leaf, short morphotype (М1). n = 100; * p < 0.01.
Fig. 4. Dendrograms of similarity based on the results of the ISSR analysis of the DNA of diploid wheats and the mutant forms of T. sinskajae: a) using ISSR-33 primer; b) using ISSR-16 primer; c) using ISSR-24 primer.
Fig. 5. The results of the morphometric analysis of T. sinskajae in the second year of the survey (2019). Stem length: a) long morphotype; b) short morphotype. Spike length: c) long morphotype; d) short morphotype. n = 100; * p < 0.01.
References
- Zaharieva M., Monneveux P. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): The long life of a founder crop of agriculture. Genet. Resour. Crop Evol., 2014, vol. 61, pp. 677–706. doi: 10.1007/s10722-014-0084-7.
- Filatenko A.A., Kurkiev U.K. Sinskaya wheat (new species – Triticum sinskajae A. Filat. et Kurk.). Tr. Prikl. Bot., Genet. Sel., 1975, vol. 54, no. 1, pp. 239–241. (In Russian)
- Dorofeev V.F., Korovina O.N. (Eds.) Kul’turnaya flora SSSR [Cultivated Plants of the USSR]. Vol. 1: Wheat. Leningrad, Kolos, 1979. 347 p. (In Russian)
- Simons K.J., Fellers J.P., Trick H.N., Zhang Z., Tai Y.-S., Gill B.S., Faris J.D. Molecular characterization of the major wheat domestication gene Q. Genetics, 2006, vol. 172, no. 1, pp. 547–555. doi: 10.1534/genetics.105.044727.
- Tverdokhleb E.V. Variability of traits in the cultivated einkorn wheats Triticum monococcum L. and Triticum sinskajae A. Filat. et Kurk. Visn. Khark. Nats. Agrar. Univ. Ser. Bіol., 2015, no. 3, pp. 83–90. (In Russian)
- Kurkiev U.K., Filatenko A.A. New forms of Sinskaya wheat (Triticum sinskajae A. Filat. et Kurk.) with easy thrashing and short-stem genes. Dokl. Ross. Akad. S-kh. Nauk, 2000, no. 4, pp. 10–12. (In Russian)
- Till B., Cooper J., Tai T.H., Colowit P., Greene E.A., Henikof S., Comai L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol., 2007, vol. 7, art. 19, pp. 1–12. doi: 10.1186/1471-2229-7-19.
- Suprasanna P., Mirajkar S.J., Bhagwat S.G. Induced mutations and crop improvement. In: Bahadur B., Venkat Rajam M., Sahijram L., Krishnamurthy K. (Eds.) Plant Biology and Biotechnology. Vol. 1: Plant diversity, organization, function and improvement. New Delhi, Springer, 2015, pp. 593–617. doi: 10.1007/978-81-322-2286-6_23.
- Mugnozza G.T.S., Monti L.M. Effects of recurrent mutagenic treatment in Durum wheat. Mutat. Res., 1966, vol. 3, no. 4, pp. 298–304. doi: 10.1016/0027-5107(66)90036-4.
- Warner R.L., Kudrna D.A., Spaeth S.C., Jones S.S. Dormancy in white-grain mutants of Chinese Spring wheat (Triticum aestivum L.). Seed Sci. Res., 2000, vol. 1, no. 1, pp. 51–60. doi: 10.1017/S0960258500000064.
- Srivastava P., Marker S., Pandey P., Tiwari D.K. Mutagenic effects of sodium azide on the growth and yield characteristics in wheat (Triticum aestivum L. em. Thell.). Asian J. Plant Sci., 2011, vol. 10, no. 3, pp. 190–201. doi: 10.3923/ajps.2011.190.201.
- Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 1987, vol. 19, no. 1, pp. 11–15.
- Nigmatullina N.V., Kuluev A.R., Kuluev B.R. Molecular markers used to determine the genetic diversity and species identification of wild plants. Biomika, 2018, vol. 10, no. 3, pp. 290–318. doi: 10.31301/2221-6197.bmcs.2018-39. (In Russian)
- Sen A., Sarsu F. Obtaining candidate salt tolerant wheat mutant lines derived from combination of sodium azide mutagenesis and somatic embryogenesis. Trakya Univ. J. Nat. Sci., 2019, vol. 20, no. 2, pp. 129–134. doi: 10.23902/trkjnat.571255.
- Watanabe N. Breeding opportunities for early, free-threshing and semidwarf Triticum monococcum L. Euphytica, 2017, vol. 213, art. 201, pp. 1–11. doi: 10.1007/s10681-017-1987-0.
- Al’derov A.A., Kurkiev U.K. On the genetics of short-stem diploid naked wheat line. Tezisy dokladov na konferentsii po chastnoi genetike rastenii [Proc. Conf. on Private Plant Genetics]. Vol. 1. Kyiv, 1989, pp.120–121. (In Russian)
- Rascio A., Russo M., Mazzucco L., Platani C., Nicastro G., Di Fonzo N. Enhanced osmotolerance of a wheat mutant selected for potassium accumulation. Plant Sci., 2001, vol. 160, no. 3, pp. 441–448. doi: 10.1016/S0168-9452(00)00404-0.
- Sboeva Y.V, Vasil’eva U.C, Chertov N.V, Pystogova N.A, Boronnikova S.V, Kalendar R., Martynenko N. Molecular genetic identification of Scots pine and Siberian larch populations in Perm krai based on polymorphism of ISSR-PCR markers. Sib. Lesn. Zh., 2020, no. 4, pp. 35–44. doi: 10.15372/SJFS20200405. (In Russian)
- Wannajindaporn A., Kativat C., Tantasawat P.A. Mutation induction of Dendrobium ‘Earsakul’ using sodium azide. HortScience, 2016, vol. 51, no. 11, pp. 1363–1370. doi: 10.21273/HORTSCI10860-16.
The content is available under the license Creative Commons Attribution 4.0 License.