I.Yu. Filin*, K.V. Kitaeva**, A.A. Rizvanov***, V.V. Solovyeva****
Kazan Federal University, Kazan, 420008 Russia
E-mail: *filin.ivy@gmail.com, **olleth@mail.ru, ***Albert.Rizvanov@kpfu.ru, ****solovyovavv@gmail.com
Received March 28, 2022
REVIEW ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.3.347-366
For citation: Filin I.Yu., Kitaeva K.V., Rizvanov A.A., Solovyeva V.V. Current state and prospects of using dendritic cell vaccination for cancer immunotherapy. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 3, pp. 347–366. doi: 10.26907/2542-064X.2022.3.347-366. (In Russian)
Abstract
Recent advances in cancer immunotherapy have steadily increased the effectiveness of standard antitumor therapy methods. Due to their low toxicity and simple production process, personalized therapeutic vaccines based on dendritic cells are of particular clinical interest. A striking fact is that the first attempts to use such vaccines in clinical practice were discouraging. However, their scope and effectiveness were subsequently greatly enhanced by the development of new approaches to activating and loading dendritic cells with tumor-associated antigens, as well as by their use as an adjuvant in combination with other therapeutic methods for cancer treatment. This review considers new techniques and the latest achievements in the development of dendritic vaccines that ensure their clinical success.
Keywords: immunotherapy, cancer, antitumor vaccines, dendritic cells, dendritic vaccines, antigen-presenting cells
Acknowledgments. This study was supported by the Kazan Federal University Strategic Academic Leadership Program and funded by the Russian Science Foundation (project no. 22-24-20018).
Figure Captions
Fig. 1. The main stages of creating a personalized antitumor vaccine based on autologous dendritic cells (DCs). Various methods for obtaining DCs from CD14+ monocytes, CD34+ hematopoietic stem cells (HSCs), and natural DCs from the patient’s whole blood by apheresis are shown, as well as further maturation using a cocktail of cytokines or electroporation of mRNA of CD40L, CD70, and caTLR4. Methods for obtaining various types of tumor antigens are also summarized, such as: artificial neoantigens/peptides/mRNA of tumor antigens, lysate/inactivated tumor cells, and extracellular vesicles for activating DCs and their subsequent use as a DC vaccine. Revised from [2].
Fig. 2. The effect of dendritic vaccination. After the administration of dendritic vaccines, activated mature DCs migrate to the lymph nodes where they present tumor antigens to naïve CD8+ and CD4+ T-cells and B cells. Activated CD8+ and CD4+ T-cells and B cells migrate to the adjacent tumor tissue where the tumor cells are eliminated by activated cytotoxic CD8+ T-cells and NK cells, while CD4+ T-helpers and B cells release pro-inflammatory cytokines that enhance cytotoxic effects. Revised from [2].
References
- Filin I.Y., Solovyeva V.V., Kitaeva K.V., Rutland C.S., Rizvanov A.A. Current trends in cancer immunotherapy. Biomedicines, 2020, vol. 8, no. 12, art. 621, pp. 1–36. doi: 10.3390/biomedicines8120621.
- Filin I.Y., Kitaeva K.V., Rutland C.S., Rizvanov A.A., Solovyeva V.V. Recent advances in experimental dendritic cell vaccines for cancer. Front. Oncol., 2021, vol. 11, art. 730824, pp. 1–7. doi: 10.3389/fonc.2021.730824.
- Allan R.S., Waithman J., Bedoui S., Jones C.M., Villadangos J.A., Zhan Y., Lew A.M., Shortman K., Heath W.R., Carbone F.R. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity, 2006, vol. 25, no. 1, pp. 153–162. doi: 10.1016/j.immuni.2006.04.017.
- Sánchez-Sánchez N., Riol-Blanco L., Rodríguez-Fernández J.L. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J. Immunol., 2006, vol. 176, no. 9, pp. 5153–5159. doi: 10.4049/jimmunol.176.9.5153.
- Ogasawara M., Miyashita M., Yamagishi Y., Ota S. Dendritic cell vaccination combined with a conventional chemotherapy for patients with relapsed or advanced pancreatic ductal adenocarcinoma: A single-center phase I/II trial. Ther. Apheresis Dial., 2021, vol. 25, no. 4, pp. 415–424. doi: 10.1111/1744-9987.13659.
- van Willigen W.W., Bloemendal M., Boers-Sonderen M.J., de Groot J.W.B., Koornstra R.H.T., van der Veldt A.A.M., Haanen J.B.A.G., Boudewijns S., Schreibelt G., Gerritsen W.R., de Vries I.J.M., Bol K.F. Response and survival of metastatic melanoma patients treated with immune checkpoint inhibition for recurrent disease on adjuvant dendritic cell vaccination. Oncoimmunology, 2020, vol. 9, no. 1, art. 1738814, pp. 1–8. doi: 10.1080/2162402X.2020.1738814.
- Kantoff P.W., Higano C.S., Shore N.D., Berger E.R., Small E.J., Penson D.F., Redfern C.H., Ferrari A.C., Dreicer R., Sims R.B., Xu Y., Frohlich M.W., Schellhammer P.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, vol. 363, no. 5, pp. 411-422. doi: 10.1056/Nejmoa1001294.
- Baldueva I.A., Novik A.V., Moiseenko V.M., Nekhaeva T.L., Danilova A.B., Danilov A.O., Protsenko S.A., Petrova T.Yu., Uleiskaya G.I., Shchekina L.A. Phase 2 clinical trial of the autologous dendritic cell vaccine with an immunologic adjuvant in patients with cutaneous melanoma. Vopr. Onkol., 2012, vol. 58, no. 2, pp. 212–221. (In Russian)
- Sabado R.L., Bhardwaj N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy, 2010, vol. 2, no. 1, pp. 37–56. doi: 10.2217/imt.09.43.
- Wilgenhof S., Van Nuffel A.M.T., Benteyn D., Corthals J., Aerts C., Heirman C., Van Riet I., Bonehill A., Thielemans K., Neyns B. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann. Oncol., 2013, vol. 24, no. 10, pp. 2686–2693. doi: 10.1093/annonc/mdt245.
- Okada H., Kalinski P., Ueda R., Hoji A., Kohanbash G., Donegan T.E., Mintz A.H., Engh J.A., Bartlett D.L., Brown C.K., Zeh H., Holtzman M.P., Reinhart T.A., Whiteside T.L., Butterfield L.H., Hamilton R.L., Potter D.M., Pollack I.F., Salazar A.M., Lieberman F.S. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol., 2011, vol. 29, no. 3, pp. 330–336. doi: 10.1200/JCO.2010.30.7744.
- Banchereau J., Palucka A.K., Dhodapkar M., Burkeholder S., Taquet N., Rolland A., Taquet S., Coquery S., Wittkowski K.M., Bhardwaj N., Pineiro L., Steinman R., Fay J. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res., 2001, vol. 61, no. 17, pp. 6451–6458.
- Klechevsky E., Liu M., Morita R., Banchereau R., Thompson-Snipes L., Palucka A.K., Ueno H., Banchereau J. Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Hum. Immunol., 2009, vol. 70, no. 5, pp. 281–288. doi: 10.1016/j.humimm.2009.02.004.
- Pulendran B., Banchereau J., Burkeholder S., Kraus E., Guinet E., Chalouni C., Caron D., Maliszewski C., Davoust J., Fay J., Palucka K. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol., 2000, vol. 165, no. 1, pp. 566–572. doi: 10.4049/jimmunol.165.1.566.
- Schreibelt G., Bol K.F., Westdorp H., Wimmers F., Aarntzen E.H., Duiveman-de Boer T., van de Rakt M.W.M.M., Scharenborg N.M., de Boer A.J., Pots J.M., Olde Nordkamp M.A.M., van Oorschot T.G.M., Tel J., Winkels G., Petry K., Blokx W.A.M., van Rossum M.M., Welzen M.E.B., Mus R.D.M., Croockewit S.A.J., Koornstra R.H.T., Jacobs J.F.M., Kelderman S., Blank C.U., Gerritsen W.R., Punt C.J.A., Figdor C.G., de Vries I.J.M. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin. Cancer Res., 2016, vol. 22, no. 9, pp. 2155–2166. doi: 10.1158/1078-0432.CCR-15-2205.
- Adams S., Kozhaya L., Martiniuk F., Meng T.-C., Chiriboga L., Liebes L., Hochman T., Shuman N., Axelrod D., Speyer J., Novik Y., Tiersten A., Goldberg J.D., Formenti S.C., Bhardwaj N., Unutmaz D., Demaria S. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin. Cancer Res., 2012, vol. 18, no. 24, pp. 6748–6757. doi: 10.1158/1078-0432.CCR-12-1149.
- Gardner A., de Mingo Pulido Á., Ruffell B. Dendritic cells and their role in immunotherapy. Front. Immunol., 2020, vol. 11, art. 924, pp. 1–14. doi: 10.3389/fimmu.2020.00924.
- Diener K.R., Moldenhauer L.M., Lyons A.B., Brown M.P., Hayball J.D. Human Flt-3-ligand-mobilized dendritic cells require additional activation to drive effective immune responses. Exp. Hematol., 2008, vol. 36, no. 1, pp. 51–60. doi: 10.1016/j.exphem.2007.08.024.
- Chulpanova D.S., Solovyeva V.V., Kitaeva K.V., Dunham S.P., Khaiboullina S.F., Rizvanov A.A. Recombinant viruses for cancer therapy. Biomedicines, 2018, vol. 6, no. 4, art. 94, pp. 1–14. doi: 10.3390/biomedicines6040094.
- Rossowska J., Anger N., Szczygieł A., Mierzejewska J., Pajtasz-Piasecka E. Intratumoral lentivector-mediated TGF-ß1 gene downregulation as a potent strategy for enhancing the antitumor effect of therapy composed of cyclophosphamide and dendritic cells. Front. Immunol., 2017, vol. 8, art. 713, pp. 1–15. doi: 10.3389/fimmu.2017.00713.
- Palucka A.K., Ueno H., Connolly J., Kerneis-Norvell F., Blanck J.-P., Johnston D.A., Fay J., Banchereau J. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother., 2006, vol. 29, no. 5, pp. 545–557. doi: 10.1097/01.cji.0000211309.90621.8b.
- Salcedo M., Bercovici N., Taylor R., Vereecken P., Massicard S., Duriau D., Vernel-Pauillac F., Boyer A., Baron-Bodo V., Mallard E., Bartholeyns J., Goxe B., Latour N., Leroy S., Prigent D., Martiat P., Sales F., Laporte M., Bruyns C., Romet-Lemonne J.-L., Abastado J.-P., Lehmann F., Velu T. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol. Immunother., 2006, vol. 55, no. 7, pp. 819–829. doi: 10.1007/s00262-005-0078-6.
- Squadrito M.L., Cianciaruso C., Hansen S.K., De Palma M. EVIR: Chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens. Nat. Methods, 2018, vol. 15, no. 3, pp. 183–186. doi: 10.1038/nmeth.4579.
- Chulpanova D.S., Kitaeva K.V., James V., Rizvanov A.A., Solovyeva V.V. Therapeutic prospects of extracellular vesicles in cancer treatment. Front. Immunol., 2018, vol. 9, art. 1534, pp. 1–10. doi: 10.3389/fimmu.2018.01534.
- Block M.S., Dietz A.B., Gustafson M.P., Kalli K.R., Erskine C.L., Youssef B., Vijay G.V., Allred J.B., Pavelko K.D., Strausbauch M.A., Lin Y., Grudem M.E., Jatoi A., Klampe C.M., Wahner-Hendrickson A.E., Weroha S.J., Glaser G.E., Kumar A., Langstraat C.L., Solseth M.L., Deeds M.C., Knutson K.L., Cannon M.J. Th17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients. Nat. Commun., 2020, vol. 11, no. 1, art. 5173, pp. 1–12. doi: 10.1038/s41467-020-18962-z.
- Nagai K., Adachi T., Harada H., Eguchi S., Sugiyama H., Miyazaki Y. Dendritic cell-based immunotherapy pulsed with Wilms tumor 1 peptide and mucin 1 as an adjuvant therapy for pancreatic ductal adenocarcinoma after curative resection: A phase I/IIa clinical trial. Anticancer Res., 2020, vol. 40, no. 10, pp. 5765–5776. doi: 10.21873/anticanres.14593.
- Matsui H.M., Hazama S., Nakajima M., Xu M., Matsukuma S., Tokumitsu Y., Shindo Y., Tomochika S., Yoshida S., Iida M., Suzuki N., Takeda S., Yoshino S., Ueno T., Oka M., Nagano H. Novel adjuvant dendritic cell therapy with transfection of heat-shock protein 70 messenger RNA for patients with hepatocellular carcinoma: A phase I/II prospective randomized controlled clinical trial. Cancer Immunol. Immunother., 2021, vol. 70, no. 4, pp. 945–957. doi: 10.1007/s00262-020-02737-y.
- Lukashina M.I., Smirnova A., Aliev V.A., Samoilenko I.V., Semenov N.N., Veiko V.P., Mikhailova I.N., Barsukov Yu.A., Baryshnikov A.Yu. Dendritic cell vaccines in colorectal cancer therapy. Vestn. RONTs im. N.N. Blokhina Ross. Akad. Med. Nauk, 2008, vol. 19, no. 3, pp. 35–42. (In Russian)
- Fadeev F.A., Zamyatin A.V., Sedneva-Lugovets D.V., Mikerov I.A., Gubaeva O.V. Generation of dendritic cells for cancer therapy. Vestn. Ural. Med. Akad. Nauki, 2020, vol. 17, no. 4, pp. 347–353. doi: 10.22138/2500-0918-2020-17-4-347-353.
- Bulgarelli J., Tazzari M., Granato A.M., Ridolfi L., Maiocchi S., de Rosa F., Petrini M., Pancisi E., Gentili G., Vergani B., Piccinini F., Carbonaro A., Leone B.E., Foschi G., Ancarani V., Framarini M., Guidoboni M. Dendritic cell vaccination in metastatic melanoma turns “non-T cell inflamed” into “T-cell inflamed” tumors. Front. Immunol., 2019, vol. 10, art. 2353, pp. 1–13. doi: 10.3389/fimmu.2019.02353.
- Taube J.M., Anders R.A., Young G.D., Xu H., Sharma R., McMiller T.L., Chen S., Klein A.P., Pardoll D.M., Topalian S.L., Chen L. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med., 2012, vol. 4, no. 127, art. 127ra37, pp. 1–22. doi: 10.1126/scitranslmed.3003689.
- Wilgenhof S., Corthals J., Heirman C., van Baren N., Lucas S., Kvistborg P., Thielemans K., Neyns B. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J. Clin. Oncol., 2016, vol. 34, no. 12, pp. 1330–1338. doi: 10.1200/JCO.2015.63.4121.
- Jansen Y., Kruse V., Corthals J., Schats K., van Dam P.-J., Seremet T., Heirman C., Brochez L., Kockx M., Thielemans K., Neyns B. A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol. Immunother., 2020, vol. 69, no. 12, pp. 2589–2598. doi: 10.1007/s00262-020-02618-4.
- Boudewijns S., Bloemendal M., de Haas N., Westdorp H., Bol K.F., Schreibelt G., Aarntzen E.H.J.G., Lesterhuis W.J., Gorris M.A.J., Croockewit A., van der Woude L.L., van Rossum M.M., Welzen M., de Goede A., Hato S.V., van der Graaf W.T.A., Punt C.J.A., Koornstra R.H.T., Gerritsen W.R., Figdor C.G., de Vries I.J.M. Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: A prospective, randomized phase 2 trial. Cancer Immunol. Immunother., 2020, vol. 69, no. 3, pp. 477–488. doi: 10.1007/s00262-019-02466-x.
- Petenko N.N., Mikhailova I.N., Chkadua G.Z., Demidov L.V., Baryshnikov A.Yu. Dendritic cell vaccine therapy after radical surgery for cutaneous melanoma. Sarkomy Kostei, Myagkikh Tkanei Opukholi Kozhi, 2022, no. 1, pp. 43–49. (In Russian)
- Sturm D., Bender S., Jones D.T., Lichter P., Grill J., Becher O., Hawkins C., Majewski J., Jones C., Costello J.F., Iavarone A., Aldape K., Brennan C.W., Jabado N., Pfister S.M. Paediatric and adult glioblastoma: Multiform (epi)genomic culprits emerge. Nat. Rev. Cancer, 2014, vol. 14, no. 2, pp. 92–107. doi: 10.1038/nrc3655.
- Polyzoidis S., Ashkan K. DCVax®-L-developed by Northwest Biotherapeutics. Hum. Vaccines Immunother., 2014, vol. 10, no. 11, pp. 3139–3145. doi: 10.4161/hv.29276.
- Liau L.M., Ashkan K., Tran D.D., Campian J.L., Trusheim J.E., Cobbs C.S., Heth J.A., Salacz M., Taylor S., D’Andre S.D., Iwamoto F.M., Dropcho E.J., Moshel Y.A., Walter K.A., Pillainayagam C.P., Aiken R., Chaudhary R., Goldlust S.A., Bota D.A., Duic P., Grewal J., Elinzano H., Toms S.A., Lillehei K.O., Mikkelsen T., Walbert T., Abram S.R., Brenner A.J., Brem S., Ewend M.G., Khagi S., Portnow J., Kim L.J., Loudon W.G., Thompson R.C., Avigan D.E., Fink K.L., Geoffroy F.J., Lindhorst S., Lutzky J., Sloan A.E., Schackert G., Krex D., Meisel H.-J., Wu J., Davis R.P., Duma C., Etame A.B., Mathieu D., Kesari S., Piccioni D., Westphal M., Baskin D.S., New P.Z., Lacroix M., May S.-A., Pluard T.J., Tse V., Green R.M., Villano J.L., Pearlman M., Petrecca K., Schulder M., Taylor L.P., Maida A.E., Prins R.M., Cloughesy T.F., Mulholland P., Bosch M.L. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med., 2018, vol. 16, no. 1, art. 142, pp. 1–9. doi: 10.1186/s12967-018-1507-6.
- Mitsuya K., Akiyama Y., Iizuka A., Miyata H., Deguchi S., Hayashi N., Maeda C., Kondou R., Kanematsu A., Watanabe K., Ashizawa T., Abe Y., Ito I., Oishi T., Sugino T., Nakasu Y., Yamaguchi K. Alpha-type-1 polarized dendritic cell-based vaccination in newly diagnosed high-grade glioma: A phase II clinical trial. Anticancer Res., 2020, vol. 40, no. 11, pp. 6473–6484. doi: 10.21873/anticanres.14669.
- Wang Q.-T., Nie Y., Sun S.-N., Lin T., Han R.-J., Jiang J., Li Z., Li J.-Q., Xiao Y.-P., Fan Y.-Y., Yuan X.-H., Zhang H., Zhao B.-B., Zeng M., Li S.-Y., Liao H.-X., Zhang J., He Y.-W. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol. Immunother., 2020, vol. 69, no. 7, pp. 1375–1387. doi: 10.1007/s00262-020-02496-w.
- Lutsuk R.A., Olyushin V.E., Tastanbekov M.M., Rostovtsev D.M., Papayan G.V., Filatov M.V., Sebelev K.I., Zabrodskaya Yu.M., Maslova L.N. Photodynamic therapy and specific immunotherapy based on autologous dendritic cells in treating patients with recurrent malignant gliomas. Ross. Neirokhir. Zh. im. Professora A.L. Polenova, 2018, vol. 10, no. 2, pp. 71–78. (In Russian)
- Hlavackova E., Pilatova K., Cerna D., Selingerova I., Mudry P., Mazanek P., Fedorova L., Merhautova J., Jureckova L., Semerad L., Pacasova R., Flajsarova L., Souckova L., Demlova R., Sterba J., Valik D., Zdrazilova-Dubska L. Dendritic cell-based immunotherapy in advanced sarcoma and neuroblastoma pediatric patients: Anti-cancer treatment preceding monocyte harvest impairs the immunostimulatory and antigen-presenting behavior of DCs and manufacturing process outcome. Front. Oncol., 2019, vol. 9, art. 1034, pp. 1–15. doi: 10.3389/fonc.2019.01034.
- Raj S., Bui M.M., Springett G., Conley A., Lavilla-Alonso S., Zhao X., Chen D., Haysek R., Gonzalez R., Letson G.D., Finkelstein S.E., Chiappori A.A., Gabrilovitch D.I., Antonia S.J. Long-term clinical responses of neoadjuvant dendritic cell infusions and radiation in soft tissue sarcoma. Sarcoma, 2015, vol. 2015, art. 614736, pp. 1–8. doi: 10.1155/2015/614736.
- Fedorova L., Mudry P., Pilatova K., Selingerova I., Merhautova J., Rehak Z., Valik D., Hlavackova E., Cerna D., Faberova L., Mazanek P., Pavelka Z., Demlova R., Sterba J., Zdrazilova-Dubska L. Assessment of immune response following dendritic cell-based immunotherapy in pediatric patients with relapsing sarcoma. Front. Oncol., 2019, vol. 9, art. 1169, pp. 1–12. doi: 10.3389/fonc.2019.01169.
- Cox M.C., Castiello L., Mattei M., Santodonato L., D’Agostino G., Muraro E., Martorelli D., Lapenta C., Di Napoli A., Di Landro F., Cangemi M., Pavan A., Castaldo P., Hohaus S., Donati S., Montefiore E., Berdini C., Carlei D., Monque D.M., Ruco L., Prosperi D., Tafuri A., Spadaro F., Sestili P., Spada M., Dolcetti R., Santini S.M., Rozera C., Aricò E., Capone I., Belardelli F. Clinical and antitumor immune responses in relapsed/refractory follicular lymphoma patients after intranodal injections of IFNα-dendritic cells and rituximab: A phase I clinical trial. Clin. Cancer Res., 2019, vol. 25, no. 17, pp. 5231–5241. doi: 10.1158/1078-0432.CCR-19-0709.
- Lin Y., Atwell T., Weisbrod A., Maas M., Armstrong A., Deeds M., Bulur P., Gustafson M., Zhang Z., Cordes S., Porrata L., Markovic S., Johnston P., Micallef I., Inwards D., Colgan J., Ansell S., Gastineau D., Dietz A., Witzig T. Dendritic cell vaccine treatment for indolent B-cell non-Hodgkin lymphoma: Clinical trial in progress. Cytotherapy, 2015, vol. 17, no. 6, suppl., p. S17. doi: 10.1016/j.jcyt.2015.03.358.
The content is available under the license Creative Commons Attribution 4.0 License.