G.O. Zhdanova a*, D.I. Stom a,b,c**, N.Yu. Yudina d***, S.V. Alferov d****, Z.U. Dzhangidze e*****, A.D. Stom a******, M.Yu. Tolstoy b*******,
I.A. Bogdanova a********, A.N. Chesnokova b*********
aIrkutsk State University, Irkutsk, 664003 Russia
bIrkutsk National Research Technical University, Irkutsk, 664074 Russia
cBaikal Museum, Siberian Branch, Russian Academy of Sciences, Listvyanka, Irkutsk region, 664520 Russia
dTula State University, Tula, 300012 Russia
eMoscow State University of Civil Engineering, Moscow, 129337 Russia
E-mail: *zhdanova86@ya.ru, **stomd@mail.ru, ***tysia21-05-90@mail.ru, ****chem@tsu.tula.ru, *****d_zaza@mail.ru, ******apatania@yandex.ru,
*******tolstoi@istu.edu, ********irinairk@gmail.com, *********chesnokova@istu.edu
Received February 22, 2022
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.2.279-296
For citation: Zhdanova G.O., Stom D.I., Yudina N.Yu., Alferov S.V., Dzhangidze Z.U., Stom A.D., Tolstoy M.Yu., Bogdanova I.A., Chesnokova A.N. Generation of electricity in BFC by the biological product “Doctor Robik” during the purification of nitrogen-containing wastewater. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 2, pp. 279–296. doi: 10.26907/2542-064X.2022.2.279-296. (In Russian)
Abstract
In this study, we evaluated the efficiency of a biofuel cell technology (BFC) based on the commercial biological product “Doctor Robik 109” in the utilization of some nitrogen-containing components of wastewater (urea, ammonium nitrogen, and peptone). The following electrochemical parameters were measured during the BFC operation with “Doctor Robik 109”: voltage, current strength, power, and redox potential of the anolyte. The nitrogen-containing substrates were determined using photometric methods. The number of microorganisms was calculated by Koch’s method. It was shown that “Doctor Robik 109” generated an electric current in the BFC upon the usage of urea (0.5 g/L), ammonium nitrogen (0.5 g/L of NH4+ ions), and peptone (0.5 g/L) as substrates. The current generation by microorganisms of “Doctor Robik 109” in the BFC was accompanied by an increase in the number of cells of microorganisms, a depletion of the tested substrates, and a decrease in the redox potential of the anolyte. In the BFC containing model wastewater with the addition of 0.5 g/L of urea, “Doctor Robik 109” generated an open-circuit voltage of up to 332 mV (for 5 days). With 0.5 g/L NH4+ and 0.5 g/L peptone, this value was higher – up to 483 mV (for 1 day) and up to 520 mV (for 10 days), respectively. The current strength (in the short-circuit mode) in the BFC with urea reached 519 μA, and in the BFC with peptone it was more than two times higher (up to 1248 μA). Based on the data obtained, with an account of the breadth of the substrate specificity of microorganisms of “Doctor Robik 109”, its low cost and ease of use, recommendations were given for the use of this biological product in BFC for waste disposal and treatment of various types of wastewater with simultaneous generation of electric current.
Keywords: biofuel cells, generation of electric current, bioagent microorganisms, biological products, “Doctor Robik”, nitrogen-containing wastewater, wastewater treatment
Acknowledgments. This study was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the state assignment in the field of research (project no. FEWG-2021-0013).
Figure Captions
Fig. 1. Dynamics of voltage (a) and current strength (b) generated in the BFC by the microbial preparation “Doctor Robik 109” when using urea (medium – model wastewater, electrodes – carbon cloth, urea concentration – 0.5 g/L).
Fig. 2. Dynamics of the number of viable cells of the microbial preparation “Doctor Robik 109” and the concentration of urea in the BFC anolyte during its operation (medium – model wastewater, electrodes – carbon cloth, urea concentration - 0.5 g/L).
Fig. 3. Dynamics of voltage (a) and change in the concentration of ammonium nitrogen (b) in the BFC under the action of the microbial preparation “Doctor Robik 109” (medium – model wastewater, initial content of NH4+ – 0.5 g/L (in the form of NH4Cl), electrodes – carbon cloth).
Fig. 4. Dynamics of voltage (a) and current strength (b) generated in the BFC by the microbial preparation “Doctor Robik 109” when using peptone (medium – model wastewater, electrodes – carbon cloth, peptone concentration – 0.5 g/L).
Fig. 5. Dynamics of the redox potential of the BFC anolyte containing the native and inactivated microbial preparation “Doctor Robik 109” as a bioagent (medium – model wastewater, electrodes – carbon cloth, peptone concentration – 0.5 g/L).
Fig. 6. Changes in the indicator of chemical oxygen consumption of the anolyte of the studied BFCs (native and autoclaved preparation “Doctor Robik 109”, medium – model wastewater, substrate – peptone 0.5 g/L).
Fig. 7. Dependence of the power of the BFC with the microbial preparation “Doctor Robik 109” on external resistance (medium – model wastewater, substrate – peptone 0.5 g/L, electrodes – carbon cloth, BFC exposure time – 2 days).
Fig. 8. Dependence of the power of the BFC with the microbial preparation “Doctor Robik 109” for two days of exposure, on external resistance (medium – model wastewater, substrate – sodium acetate 0.5 g/L + urea 0.5 g/L, electrodes – carbon cloth).
References
- Konovalova E.Yu., Stom D.I., Zhdanova G.O., Yuriev D.A., Li Y., Barbora L., Goswami P. The microorganisms used for working in microbial fuel cells. AIP Conf. Proc., 2018, vol. 1952, art. 020017, pp. 1–10. doi: 10.1063/1.5031979.
- Badea S.L., Enache S., Tamaian R., Niculescu V.-C., Varlam M., Pirvu C.-V. Enhanced open-circuit voltage and power for two types of microbial fuel cells in batch experiments using Saccharomyces cerevisiae as biocatalyst. J. Appl. Electrochem., 2019, vol. 49, no. 1, pp. 17–26. doi: 10.1007/s10800-018-1254-7.
- Dai H.N., Nguyen T.-A. D., My LE L.-Ph., Tran M.V., Lan T.-H., Wang Ch.-T. Power generation of Shewanella oneidensis MR-1 microbial fuel cells in bamboo fermentation effluent. Int. J. Hydrogen Energy, 2021, vol. 46, no. 31, pp. 16612–16621. doi: 10.1016/j.ijhydene.2020.09.264.
- Choudhury P., Uday U.Sh.P., Bandyopadhyay T.K., Ray R.N., Bhunia B. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered, 2017, vol. 8, no. 5, pp. 471–487. doi: 10.1080/21655979.2016.1267883.
- Ren J., Li N., Du M., Zhang Y., Hao Ch., Hu R. Study on the effect of synergy effect between the mixed cultures on the power generation of microbial fuel cells. Bioengineered, 2021, vol. 12, no. 1, pp. 844–854. doi: 10.1080/21655979.2021.1883280.
- Jadhav D.A., Ghangrekar M.M. Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. Int. J. Environ. Technol. Manage., 2020, vol. 23, no. 1, pp. 50–67. doi: 10.1504/IJETM.2020.110159.
- Lai M.-F., Lou Ch.-W., Lin J.-H. 3D composite electrodes of microbial fuel cells used in livestock wastewater: Evaluations of coating and performance. Int. J. Hydrogen Energy, 2017, vol. 42, no. 45, pp. 27666–27676. doi: 10.1016/j.ijhydene.2017.07.021.
- Xin Sh., Shen J., Liu G., Chen Q., Xiao Zh., Zhang G., Xin Y. High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst. Energy, 2020, vol. 196, art. 117123, pp. 1–10. doi: 10.1016/j.energy.2020.117123.
- Sreelekshmy B.R., Basheer R., Sivaraman S., Vasudevan V., Elias L., Shibli S.M.A. Sustainable electric power generation from live anaerobic digestion of sugar industry effluents using microbial fuel cells. J. Mater. Chem. A, 2020, vol. 8, no. 12, pp. 6041–6056. doi: 10.1039/D0TA00459F.
- Tessema T.D., Yemata T.A. Experimental dataset on the effect of electron acceptors in energy generation from brewery wastewater via a microbial fuel cell. Data Brief, 2021, vol. 37, art. 107272, pp. 1–10. doi: 10.1016/j.dib.2021.107272.
- Pugazhendi A., Al‐Mutairi A.E., Jamal M.T., Jeyakumar R.B., Palanisamy K. Treatment of seafood industrial wastewater coupled with electricity production using air cathode microbial fuel cell under saline condition. Int. J. Energy Res., 2020, vol. 44, no. 15, pp. 12535–12545. doi: 10.1002/er.5774.
- Elakkiya E., Niju S. Bioelectrochemical treatment of real-field bagasse-based paper mill wastewater in dual-chambered microbial fuel cell. 3 Biotech, 2021, vol. 11, no. 2, art. 42, pp. 1–10. doi: 10.1007/s13205-020-02606-6.
- Narayan M., Solanki P., Rabha A.K., Srivastava R.K. Treatment of pulp and paper industry effluent and electricity generation by constructed wetland coupled with microbial fuel cell (CW-MFC). J. Pharmacogn. Phytochem., 2018, vol. 7, no. 6, pp. 493–498.
- Sarmin S., Ideris A.B., Ethiraj B., Islam M.A., Yee Ch.S., Khan Md.M.R. Potentiality of petrochemical wastewater as substrate in microbial fuel cell. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 736, no. 3, art. 032015, pp. 1–10. doi: 10.1088/1757-899X/736/3/032015.
- Sarmin S., Ethiraj B., Islam M.A., Ideris A., Yee Ch.S., Khan Md.M.R. Bio-electrochemical power generation in petrochemical wastewater fed microbial fuel cell. Sci. Total Environ., 2019, vol. 695, art. 133820, pp. 1–11. doi: 10.1016/j.scitotenv.2019.133820.
- Ilamathi R., Jayapriya J. Microbial fuel cells for dye decolorization. Environ. Chem. Lett., 2018, vol. 16, no. 1, pp. 239–250. doi: 10.1007/s10311-017-0669-4.
- Miran W., Jang J., Nawaz M., Shahzad A., Lee D.S. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells. J. Hazard. Mater., 2018, vol. 352, pp. 70–79. doi: 10.1016/j.jhazmat.2018.03.027.
- Feng C., Tsai Ch.-Ch., Ma Ch.-Y., Yu Ch.-P., Hou Ch.-H. Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chem. Eng. J., 2017, vol. 330, pp. 1–10. doi: 10.1016/j.cej.2017.07.122.
- Stager J.L., Zhang X., Logan B.E. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. Bioelectrochemistry, 2017, vol. 118, pp. 154–160. doi: 10.1016/j.bioelechem.2017.08.002.
- Kuznetsov A.V., Khorina N.N., Konovalova E.Yu., Amsheev D.Yu., Ponamoreva O. N., Stom D.I. Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell. IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 808, art. 012038, pp. 1–7. doi: 10.1088/1755-1315/808/1/012038.
- Goenka R., Mukherji S., Ghosh P.C. Characterization of electrochemical behaviour of Escherichia coli MTCC 1610 in a microbial fuel cell. Bioresour. Technol. Rep., 2018, vol. 3, pp. 67–74. doi: 10.1016/j.biteb.2018.06.002.
- García-Mayagoitia S., Fernández-Luqueño F., Morales-Acosta D., Carrillo-Rodríguez J.C., García-Lobato M.A., de la Torre-Saenz L., Alonso-Lemus I.L., Rodrı́guez-Varela F.J. Energy generation from pharmaceutical residual water in microbial fuel cells using ordered mesoporous carbon and Bacillus subtilis as bioanode. ACS Sustainable Chem. Eng., 2019, vol. 7, no. 14, pp. 12179–12187. doi: 10.1021/acssuschemeng.9b01281.
- Cheng P., Shan R., Yuan H.-R., Shen W., Chen Y. Bioelectricity generation from the salinomycin-simulated livestock sewage in a Rhodococcus pyridinivorans inoculated microbial fuel cell. Process Saf. Environ. Prot., 2020, vol. 138, pp. 76–79. doi: 10.1016/j.psep.2020.03.003.
- Cao Y., Mu H., Liu W., Zhang R., Guo J., Xian M., Liu H. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microb. Cell Fact., 2019, vol. 18, art. 39, pp. 1–14. doi: 10.1186/s12934-019-1087-z.
- Islam M.A., Ong H.R., Ethiraj B., Cheng Ch.K., Khan M.M.R. Optimization of co-culture inoculated microbial fuel cell performance using response surface methodology. J. Environ. Manage., 2018, vol. 225, pp. 242–251. doi: 10.1016/j.jenvman.2018.08.002.
- Islam M.A., Ethiraj B., Cheng Ch. K., Yousuf A., Khan Md.M.R. An insight of synergy between Pseudomonas aeruginosa and Klebsiella variicola in a microbial fuel cell. ACS Sustainable Chem. Eng., 2018, vol. 6, no. 3, pp. 4130–4137. doi: 10.1021/acssuschemeng.7b04556.
- Wang C.-T., Sangeetha T., Zhao F., Garg A., Chang C.-T., Wang C.-H. Sludge selection on the performance of sediment microbial fuel cells. Int. J. Energy Res., 2018, vol. 42, pp. 4250–4255. doi: 10.1002/er.4168.
- He J., Xin X., Pei Zh., Chen L., Chu Zh., Zhao M., Wu X., Li B., Tang X., Xiao X. Microbial profiles associated improving bioelectricity generation from sludge fermentation liquid via microbial fuel cells with adding fruit waste extracts. Bioresour. Technol., 2021, vol. 337, art. 125452, pp. 1–9. doi: 10.1016/j.biortech.2021.125452.
- Almatouq A., Babatunde A.O., Khajah M., Webster G., Alfodari M. Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells. J. Water Process Eng., 2020, vol. 34, art. 101140, pp. 1–10. doi: 10.1016/j.jwpe.2020.101140.
- Heber A.J., Ni J., Sutton A.L., Patterson J.A., Fakhoury K.J., Kelly D.T., Shao P. Laboratory testing of commercial manure additives for swine odor control (Final Report). Ames, IA, USDA-ARS-Natl. Swine Res. Inf. Cent., 2001. 198 p.
- Ignatavičius G., Oškinis V. Investigation of black oil and diesel biodegradation in water. Ekologija, 2007, vol. 53, no. 4, pp. 90–94.
- Skaisgiriene A., Vaitiekūnas P., Zabukas V. Influence of chlorides and sulphates on quality of biological wastewater treatment using enzyme preparations. J. Environ. Eng. Landscape Manage., 2004, vol. 12, no. 3, pp. 91–95. doi: 10.1080/16486897.2004.9636825.
- Stom D.I., Zhdanova G.O., Kashevskii A.V. New designs of biofuel cells and testing of their work. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 262, art. 012219, pp. 1–6. doi: 10.1088/1757-899X/262/1/012219.
- State Standard 32509-2013. Surface-active agents. Method for determination of biodegradability rate in aquatic environment. Moscow, Standartinform, 2019. 26 p. (In Russian)
- Grigorova R., Norris J.R. (Eds.) Methods in Microbiology. Vol. 22: Techniques in microbial ecology. Acad. Press, 1990. 627 р.
- Basova E.M., Bulanova M.A., Ivanov V.M. Photometric detection of urea in natural waters. Moscow Univ. Chem. Bull., 2011, vol. 66, no. 6, pp. 345–350. doi: 10.3103/S0027131411060022.
- Hoseney R.C., Finney K.F. Spectrophotometric determination of urea, thiourea, and certain of their substitution products with p-dimethylaminobenzaldehyde and diacetylmonoxime. Anal. Chem., 1964, vol. 36, no. 11, pp. 2145–2148. doi: 10.1021/ac60217a034.
- RD 52.24.486-2009. Mass concentration of ammonia and ammonium ions in waters. Methodology for performing measurements by the photometric method with Nessler’s reagent. Rostov-on-Don, 2009. 21 p. (In Russian)
- Netrusov A.I., Egorova M.A., Zakharchuk L.M. Praktikum po mikrobiologii [A Practical Course in Microbiology]. Netrusov A.I. (Ed.). Moscow, Akademiya, 2005. 608 p. (In Russian)
- Belen’kaya S.L., Popova Yu.I., Kalitvyanskaya V.I. Determination of COD in wastewater. Available at: http://www.sergey-osetrov.narod.ru/Documents/How_to_define_chemical_absorption_of_ oxygen_in_sewage.htm. (In Russian)
- Holmes D.E., Dang Y., Smith J.A. Chapter Four – Nitrogen cycling during wastewater treatment. In: Gadd G.M., Sariaslani S. (Eds.) Advances in Applied Microbiology. Vol. 106. Acad. Press, 2019, pp. 113–192. doi: 10.1016/bs.aambs.2018.10.003.
- Korkina O.S., Sarapulova G.I., Zhdanova G.O., Gorbunova Yu.O., Ivanchikov Е.А., Stom D.I., Beschkov V.N. Microbiological preparation “Doctor Robik 109” as a bioagent for obtaining electrical current in MFC with the addition of fats. Izv. Irkutsk. Gos. Univ. Ser.: Biol. Ekol., 2019, vol. 28, pp. 17–25. doi: 10.26516/2073-3372.2019.28.17. (In Russian)
- Stom D.I., Zhdanova G.O., Alferov S.V., Yudina N.Yu., Chesnokova A.N., Tolstoy M.Yu., Kupchinsky A.B., Saksonov M..N, Enkhdul T., Franzetti A., Rahimnejad M. The “Doctor Robik 109” complex biopreparation as a bioagent for utilizing aquatic plant phytomass in biofuel cells. Izv. Vyssh. Uchebn. Zaved. Prikl. Khim. Biotekhnol., 2022, vol. 22, no. 1, pp. 50–63. doi: 10.21285/2227-2925-2022-12-1-50-63. (In Russian)
- Rudenko R.R., Vasilevich E.E., Zhdanova G.O., Chizhick K.I., Topchiy I.A., Stom D.I. The use of urban sewage sludge as a substrate in a microbial fuel cell. Int. J. Eng. Technol., 2018, vol. 7, no. 2.23, pp. 277–280. doi: 10.14419/ijet.v7i2.23.11931.
The content is available under the license Creative Commons Attribution 4.0 License.