A.O. Nikitina*, A.R. Yulmetov**, A.M. Kusova***, V.V. Klochkov****, D.S. Blokhin*****
Kazan Federal University, Kazan, 420008 Russia
E-mail: *annanikitina199737@gmail.com, **ajulmeto@gmail.com, ***alexakusova@mail.ru, ****vklochko@kpfu.ru, *****dblohin@kpfu.ru
Received March 11, 2022
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.2.185-195
For citation: Nikitina A.O., Yulmetov A.R., Kusova A.M., Klochkov V.V., Blokhin D.S. Atomistic simulations of PAP248-286 peptide oligomerization. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 2, pp. 185–195. doi: 10.26907/2542-064X.2022.2.185-195.
Abstract
Amyloid fibrils, dubbed SEVI (semen-derived enhancer of virus infection), contribute to the spread of HIV infection. The main components of SEVI are the fragments of prostatic acid phosphatase (PAP): PAP248-286 and PAP85-120. SEVI captures the viral particles and further stimulates their attachment to the target cells, thereby boosting viral fusion and infection. To study the oligomers of SEVI-forming peptides, we used molecular modeling, which is a powerful tool that has been applied in a great variety of studies on SEVI, and an advanced accelerated sampling method of metadynamics. Based on the obtained molecular dynamics data, it was shown that PAP248-286 has a horseshoe shape with bends in the regions of amino acid residues A274 and N269 in the dimeric state. It was suggested that the horseshoe shape might lead in the fibrillation process to the steric zipper model formation, which is typical of amyloids. It was confirmed that the process of fibril formation of PAP248-286 starts with a pairwise parallel arrangement of the peptide helical regions.
Keywords: HIV, prostatic acid phosphatase, SEVI, molecular dynamics, metadynamics
Acknowledgments. This work is supported by the Russian Science Foundation (project no. 20-73-10034). D.S. Blokhin acknowledges the funding from the RF Presidential Council for the State Support of Young Russian Scientists (Candidates of Sciences), project MK-938.2020.4.
Figure Captions
Fig. 1. Percentage of proteins included in aggregation as a function of time.
Fig. 2. Free-energy surface of the PAP248-286 dimerization process as a function of R and NCV.
Fig. 3. The plot of the free energy ΔF vs R for the process of PAP248-286 dimerization.
Fig. 4. Backbone chain RMSD (a) and radius of gyration (b) of the PAP248-286 dimer.
Fig. 5. Structure of the PAP248-286 dimer corresponding to the global minimum of free-energy surface.
Fig. 6. Free-energy surface of PAP248-286: a) trimer, b) tetramer, c) hexamer, and d) heptamer.
Fig. 7. Structure of PAP248-286: a) trimer, b) tetramer, c) hexamer, and d) heptamer. The structures correspond to the global minimum of free-energy surfaces. Key: molecule 1 – red, molecule 2 – orange, molecule 3 – yellow, molecule 4 – green, molecule 5 – cyan, molecule 6 – blue, molecule 7 – magenta.
References
- Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, vol. 75, no. 1, pp. 333–366. doi: 10.1146/annurev.biochem.75.101304.123901.
- Buchanan L.E., Dunkelberger E.B., Tran H.Q., Cheng P.-N., Chiu Ch.-Ch., Cao P., Raleigh D.P., de Pablo J.J., Nowick J.S., Zanni M.T. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 48, pp. 19285–19290. doi: 10.1073/pnas.1314481110.
- Münch J., Sauermann U., Yolamanova M., Raue K., Stahl-Hennig Ch., Kirchhoff F. Effect of semen and seminal amyloid on vaginal transmission of simian immunodeficiency virus. Retrovirology, 2013, vol. 10, art. 148, pp. 1–9. doi: 10.1186/1742-4690-10-148.
- Sievers S.A., Karanicolas J., Chang H.W., Zhao A., Jiang L., Zirafi O., Stevens J.T., Münch J., Baker D., Eisenberg D. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 2011, vol. 475, no. 7354, pp. 96–100. doi: 10.1038/nature10154.
- Dobson C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc., B, 2001, vol. 356, no. 1406, pp. 133–145. doi: 10.1098/rstb.2000.0758.
- Kelly J.W. Towards an understanding of amyloidogenesis. Nat. Struct. Biol., 2002, vol. 9, no. 5, pp. 323–325. doi: 10.1038/nsb0502-323.
- Zerovnik E. Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. Eur. J. Biochem., 2002, vol. 269, no. 14, pp. 3362–3371. doi: 10.1046/j.1432-1033.2002.03024.x.
- Habibi N., Kamaly N., Memic A., Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016, vol. 11, no. 1, pp. 41–60. doi: 10.1016/j.nantod.2016.02.004.
- Ilie I.M., Caflisch A. Simulation studies of amyloidogenic polypeptides and their aggregates. Chem. Rev., 2019, vol. 119, no. 12, pp. 6956–6993. doi: 10.1021/acs.chemrev.8b00731.
- Lotan T., Ori N., Fluhr R. Pathogenesis-related proteins are developmentally regulated in tobacco flowers. The Plant Cell, 1989, vol. 1, no. 9, pp. 881–887. doi: 10.1105/tpc.1.9.881.
- Münch J., Rücker E., Ständker L., Adermann K., Goffinet Ch., Schindler M., Wildum S., Chinnadurai R., Rajan D., Specht A., Giménez-Gallego G., Sánchez P.C., Fowler D.M., Koulov A., Kelly J.W., Mothes W., Grivel J.-Ch., Margolis L., Keppler O.T., Forssmann W.-G., Kirchhoff F. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell, 2007, vol. 131, no. 6, pp. 1059–1071. doi: 10.1016/j.cell.2007.10.014.
- Uversky V.N., Oldfield C.J., Dunker A.K. Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annu. Rev. Biophys., 2008, vol. 37, pp. 215–246. doi: 10.1146/annurev.biophys.37.032807.125924.
- Uversky V.N. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol., 2011, vol. 43, no. 8, pp. 1090–1103. doi: 10.1016/j.biocel.2011.04.001.
- Uversky V.N. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: Another illustration of the D2 concept. Expert Rev. Proteomics, 2010, vol. 7, no. 4, pp. 543–564. doi: 10.1586/epr.10.36.
- Castellano L.M., Shorter J. The surprising role of amyloid fibrils in HIV infection. Biology, 2012, vol. 1, no. 1, pp. 58–80. doi: 10.3390/biology1010058.
- Avni A., Swasthi H.M., Majumdar A., Mukhopadhyay S. Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans. Prog. Mol. Biol. Transl. Sci., 2019, vol. 166, pp. 109–143. doi: 10.1016/bs.pmbts.2019.05.005.
- Roan N.R., Müller J.A., Liu H., Chu S., Arnold F., Stürzel Ch.M., Walther P., Dong M., Witkowska H.E., Kirchhoff F., Münch J., Greene W.C. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe, 2011, vol. 10, no. 6, pp. 541–550. doi: 10.1016/j.chom.2011.10.010.
- Roan N.R., Münch J., Arhel N., Mothes W., Neidleman J., Kobayashi A., Smith-McCune K., Kirchhoff F., Greeneet W.C. The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. J Virol., 2009, vol. 83, no. 1, pp. 73–80. doi: 10.1128/jvi.01366-08.
- Arcasoy S.M., Latoche J.D., Gondor M., Pitt B.R., Pilewski J.M. Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro. Gene Ther., 1997, vol. 4, no. 1, pp. 32–38. doi: 10.1038/sj.gt.3300349.
- Davis H.E., Morgan J.R., Yarmush M.L. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys. Chem., 2002, vol. 97, nos. 2–3, pp. 159–172. doi: 10.1016/s0301-4622(02)00057-1.
- Duan J.-M., Qiu J.-Y., Tan S.-Y., Liu S.-W., Li L. Semen-derived enhancer of viral infection – a key factor in sexual transmission of HIV. Bing Du Xue Bao, 2012, vol. 28, pp. 84–88.
- Ren R., Yin S., Lai B., Ma L., Wen J., Zhang X., Lai F., Liu Sh., Li L. Myricetin antagonizes semen-derived enhancer of viral infection (SEVI) formation and influences its infection-enhancing activity. Retrovirology, 2018, vol. 15, art. 49, pp. 1–24. doi: 10.1186/s12977-018-0432-3.
- Zhang X., Chen J., Yu F., Wang Ch., Ren R., Wang Q., Tan S., Jiang Sh., Liu Sh., Li L. 3-hydroxyphthalic anhydride-modified rabbit anti-PAP IgG as a potential bifunctional HIV-1 entry inhibitor. Front. Microbiol., 2018, vol. 9, art. 1330, pp. 1–18. doi: 10.3389/fmicb.2018.01330.
- Cohen S.I.A., Vendruscolo M., Dobson C.M., Knowles T.P.J. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol., 2012, vol. 421, nos. 2–3, pp. 160–171. doi: 10.1016/j.jmb.2012.02.031.
- Shoffner S.K., Schnell S. Estimation of the lag time in a subsequent monomer addition model for fibril elongation. Phys. Chem. Chem. Phys., 2016, vol. 18, no. 31, pp. 21259–21268. doi: 10.1039/C5CP07845H.
- Arosio P., Knowles T.P.J., Linse S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys., 2015, vol. 17, no. 12, pp. 7606–7618. doi: 10.1039/c4cp05563b.
- Piñeiro Á., Villa A., Vagt T., Koksch B., Mark A.E. A molecular dynamics study of the formation, stability, and oligomerization state of two designed coiled coils: Possibilities and limitations. Biophys. J., 2005, vol. 89, no. 6, pp. 3701–3713. doi: 10.1529/biophysj.104.055590.
- Laio A., Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 20, pp. 12562–12566. doi: 10.1073/pnas.202427399.
- Sutto L., Marsili S., Gervasio F.L. New advances in metadynamics. WIREs Comput. Mol. Sci., 2012, vol. 2, no. 5, pp. 771–779. doi: 10.1002/wcms.1103.
- Ruiz-Montero M.J., Frenkel D., Brey J.J. Efficient schemes to compute diffusive barrier crossing rates. Mol. Phys., 1997, vol. 90, no. 6, pp. 925–942. doi: 10.1080/002689797171922.
- Torrie G.M., Valleau J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys., 1977, vol. 23, no. 2, pp. 187–199. doi: 10.1016/0021-9991(77)90121-8.
- Tribello G.A., Bonomi M., Branduardi D., Camilloni C., Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun., 2014, vol. 185, no. 2, pp. 604–613. doi: 10.1016/j.cpc.2013.09.018.
- Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M.R., Smith J.C., Kasson P.M., van der Spoel D., Hess B., Lindahlet E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, vol. 29, no. 7, pp. 845–854. doi: 10.1093/bioinformatics/btt055.
- Huang J., MacKerell A.D., Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, vol. 34, no. 25, pp. 2135–2145. doi: 10.1002/jcc.23354.
- Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, vol. 79, no. 2, pp. 926–935. doi: 10.1063/1.445869.
- Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, vol. 25, no. 13, pp. 1605–1612. doi: 10.1002/jcc.20084.
- Liu G., Prabhakar A., Aucoin D., Simon M., Sparks S., Robbins K.J., Sheen A., Petty S.A., Lazo N.D. Mechanistic studies of peptide self-assembly: Transient α-helices to stable β-sheets. J. Am. Chem. Soc., 2010, vol. 132, no. 51, pp. 18223–18232. doi: 10.1021/ja1069882.
- Goldschmidt L., Teng P.K., Riek R., Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 107, no. 8, pp. 3487–3492. doi: 10.1073/pnas.0915166107.
The content is available under the license Creative Commons Attribution 4.0 License.