A.I. Kedich*, V.N. Golosov**, S.V. Kharchenko***
Moscow State University, Moscow, 119991 Russia
Institute of Geography, Russian Academy of Sciences, Moscow, 119017 Russia
E-mail: *kedich22@gmail.com, **gollossov@gmail.com, ***xar4enkkoff@yandex.ru
Received July 22, 2021
REVIEW ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.1.109-134
For citation: Kedich A.I., Golosov V.N., Kharchenko S.V. Surface processes in mountainous proglacial areas: Quantitative assessments and their accuracy. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 1, pp. 109–134. doi: 10.26907/2542-064X.2022.1.109-134. (In Russian)
Abstract
This article presents a fundamental review of the most common contemporary methods used for quantitative assessment of geomorphological processes and surface transformation in proglacial areas. Our research is particularly relevant due to the significant climate change, which has taken place since the end of the Little Ice Age: its influence has been widespread in polar and mountainous proglacial regions, thereby resulting in the formation of “young” and highly dynamic proglacial areas. For such territories, of special interest is quantitative evaluation of their terrain transformation under various geomorphic processes. Here we compared different methods for their accuracy and applicability to various exogenic processes and spatial coverage. Detailed attention was given to terrestrial and airborne laser scanning (TLS, ALS), satellite radar interferometry (InSAR), elevation modeling using aerial and satellite images, and 3D surface reconstruction based on drone images (Structure from Motion, SfM). The main advantage of the above-listed methods is that they yield highly accurate quantitative results for areas of varying sizes, from individual points to whole proglacial basins. Their major weakness is the inability to measure and specify the contribution of each process taken alone to the overall surface transformation. To solve this problem, we suggested that all the methods should be combined with the ground-based ones (using benchmarks or sediment traps). As an example, the surface transformation of the buried ice outcrop located in the lower part of the lateral moraine within the Djankuat River catchment area (Central Caucasus) was assessed. Following an extreme event, the volume of the displaced material was 1880 m3 during the 2-day interval (the average displaced layer was 0.47 m), as compared to the displacement of 6330 m3 during the annual interval (the average displacement for the whole area was 1.6 m). This example demonstrates that certain extreme events may determine the proglacial terrain features.
Keywords: proglacial area, surface processes, remote sensing, quantitative assessment, drones
Acknowledgments. This study was supported by the Russian Science Foundation (project no. 19-17-00181, sect. 1, 3, and 4) and performed as part of the research project on state assignment no. 121051100166-4 to the Faculty of Geography of Moscow State University (sec. 2).
Figure Captions
Fig. 1. Major relief-forming processes in the proglacial areas.
Fig. 2. Part of the lateral moraine within the Djankuat River valley.
Fig. 3. Nomogram showing the accuracy of estimation of the linear and volumetric changes in relief elements using remote sensing and various field methods.
Fig. 4. terrestrial laser scanning; ALS –airborne laser scanning; SfM – 3D surface reconstruction based on drone images; InSAR – satellite radar interferometry; AAP – using archival aerial photographs for digital terrain modeling.
Fig. 5. Position of the sites re-surveyed using drone imaging on the general orthophotomap of the upper part of the Djankuat River valley. Red-colored line – a large region at the base of the moraine; green-colored line – a small region with the open glacial wall (see Fig. 6 for details).
Fig. 6. Relief transformation in the area of dead ice outcrops: a – the site re-surveyed using drone imaging; b – orthophotomap of the initial surface (August 18, 2020); c – orthophotomap of the resulting surface (August 20, 2020); d – height gradients.
References
- Cossart E., Fort M. Sediment release and storage in early deglaciated areas: Towards an application of the exhaustion model from the case of Massif des Écrins (French Alps) since the Little Ice Age. Nor. Geogr. Tidsskr., 2008, vol. 62, no. 2, pp. 115–131. doi: 10.1080/00291950802095145.
- Seppi R., Zanoner T., Carton A., Bondesan A., Francese R., Carturan L., Zumiani M., Giorgi M., Ninfo A. Current transition from glacial to periglacial processes in the Dolomites (South-Eastern Alps). Geomorphology, 2014, vol. 228, pp. 71–86. doi: 10.1016/j.geomorph.2014.08.025.
- Colombo N., Paro L., Godone D., Fratianni S. Geomorphology of the Hohsand basin (Western Italian Alps). J. Maps, 2016, vol. 12, no. 5, pp. 975–978. doi: 10.1080/17445647.2015.1105762.
- Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 2012, vol. 179, pp. 300–314. doi: 10.1016/j.geomorph.2012.08.021.
- Carrivick J.L., Heckmann T. Short-term geomorphological evolution of proglacial systems. Geomorphology, 2017, vol. 287, pp. 3–28. doi: 10.1016/j.geomorph.2017.01.037.
- Delaney I., Bauder A., Huss M., Weidmann Y. Proglacial erosion rates and processes in a glacierized catchment in the Swiss Alps. Earth Surf. Processes Landforms, 2018, vol. 43, no. 4, pp. 765–778. doi: 10.1002/esp.4239.
- Slaymaker O. Criteria to distinguish between periglacial, proglacial and paraglacial environments. Quaest. Geogr., 2011, vol. 30, no. 1, pp. 85–94. doi: 10.2478/v10117-011-0008-y.
- Heckmann T., Morche D. (Eds.) Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes. Springer, 2019. 367 p. doi: 10.1007/978-3-319-94184-4.
- Paul F., Bolch T. Glacier Changes since the Little Ice Age. In: Heckmann T., Morche D. (Eds.) Geomorphology of Proglacial Systems Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes. Springer, 2019, pp. 23–42. doi: 10.1007/978-3-319-94184-4_2.
- Legg N.T., Meigs A.J., Grant G.E., Kennard P. Debris flow initiation in proglacial gullies on Mount Rainier, Washington. Geomorphology, 2014, vol. 226, pp. 249–260. doi: 10.1016/j.geomorph.2014.08.003.
- Staines K.E.H., Carrivick J.L., Tweed F.S., Evans A.J., Russell A.J., Jóhannesson T., Roberts M. A multi-dimensional analysis of pro-glacial landscape change at Sólheimajökull, southern Iceland. Earth Surf. Processes Landforms, 2015, vol. 40, no. 6, pp. 809–822. doi: 10.1002/esp.3662.
- Knight J., Harrison S. Mountain glacial and paraglacial environments under global climate change: Lessons from the past, future directions and policy implications. Geogr. Ann. Ser. A, Phys. Geogr., 2014, vol. 96, no. 3, pp. 245–264. doi: 10.1111/geoa.12051.
- Tielidze L.G., Solomina O.N., Jomelli V., Dolgova E.A., Bushueva I.S., Mikhalenko V.N., Brauche R., ASTER T. Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium-10 data. Ice Snow, 2020, vol. 60, no. 3, pp. 453–470. doi: 10.31857/S2076673420030052.
- Pogorelov A.V., Boyko E.S., Petrakov D.A., Kiselev E.N. Fluctuations of the Fisht Glacier (West Caucasus) over 1909–2015. Ice Snow, 2017, vol. 57, pp. 498–506. doi: 10.15356/2076-6734-2017-4-498-506.
- Warburton J. Energenetics of alpine proglacial geomorphic processes. Trans. Inst. Brit. Geogr., 1993, vol. 18, no. 2, pp. 197–206. doi: 10.2307/622362.
- Tsyplenkov A., Vanmaercke M., Golosov V., Chalov S. Suspended sediment budget and intra-event sediment dynamics of a small glaciated mountainous catchment in the Northern Caucasus. J. Soils Sediments, 2020, vol. 20, no. 8, pp. 3266–3281. doi: 10.1007/s11368-020-02633-z.
- Popovnin V.V., Rezepkin A.A., Tielidze L.G. Superficial moraine expansion on the Djankuat Glacier snout over the direct glaciological monitoring period. Earth's Cryos., 2015, vol. 19, no. 1, P. 79–87.
- Vehling L., Rohn J., Moser M. Quantification of small magnitude rockfall processes at a proglacial high mountain site, Gepatsch glacier (Tyrol, Austria). Z. Geomorphol., 2016, vol. 60, suppl. 1, pp. 93–108. doi: 10.1127/zfg_suppl/2015/S-00184.
- Luckman B.H. The geomorphic activity of snow avalanches. Geogr. Ann. Ser. A, Phys. Geogr., 1977, vol. 59, nos. 1–2, pp. 31–48. doi: 10.1080/04353676.1977.11879945.
- Matsuoka N., Ikeda A., Date T. Morphometric analysis of solifluction lobes and rock glaciers in the Swiss Alps. Permafrost Periglacial Processes, 2005, vol. 16, no. 1, pp. 99–113. doi: 10.1002/ppp.517.
- Kellerer-Pirklbauer A., Delaloye R., Lambiel Ch., Gärtner-Roer I., Kaufmann V., Scapozza C., Krainer K., Staub B., Thibert E., Bodin X., Fischer A., Hartl L., di Cella U.M., Mair V., Marcer M., Schoeneich Ph. Interannual variability of rock glacier flow velocities in the European Alps. Proc. EUCOP5 5th Eur. Conf. on Permafrost, 2018, vol. 23, pp. 396–397.
- Kos A., Amann F., Strozzi T., Delaloye R., Ruette J., Springman S. Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland. Geophys. Res. Lett., 2016, vol. 43, no. 24, pp. 12,466–12,474. doi: 10.1002/2016GL071708.
- Schürch P., Densmore A.L., Rosser N.J., Lim M., McArdell B.W. Detection of surface change in complex topography using terrestrial laser scanning: Application to the Illgraben debris-flow channel. Earth Surf. Processes Landforms, 2011, vol. 36, no. 14, pp. 1847–1859. doi: 10.1002/esp.2206.
- Bremer M., Sass O. Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology, 2012, vol. 138, no. 1, pp. 49–60. doi: 10.1016/j.geomorph.2011.08.024.
- Micheletti N., Lane S.N., Chandler J.H. Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes. Photogramm. Rec., 2015, vol. 30, no. 150, pp. 143–165. doi: 10.1111/phor.12099.
- Rott H., Scheuchl B., Siegel A., Grasemann B. Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys. Res. Lett., 1999, vol. 26, no. 11, pp. 1629–1632. doi: 10.1029/1999GL900262.
- Delaloye R., Morard S., Barboux C., Abbet D., Gruber V., Riedo M., Gachet S. Rapidly moving rock glaciers in Mattertal. In: Graf C. (Ed.) Mattertal – ein Tal in Bewegung. Eidg. Forschungsanst. Wald, Schnee Landschaft WSL, 2013, pp. 21–31.
- Biggs J., Wright T.J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat. Commun., 2020, vol. 11, no. 1, art. 3863, pp. 1–4. doi: 10.1038/s41467-020-17587-6.
- Lambiel C., Delaloye R., Strozzi T., Lugon R., Raetzo H. ERS InSAR for assessing rock glacier activity. Proc. 9th Int. Conf. on Permafrost, Fairbanks, Alaska, USA, 2008, vol. 1, pp. 1019–1025.
- Kociuba W. Assessment of sediment sources throughout the proglacial area of a small Arctic catchment based on high-resolution digital elevation models. Geomorphology, 2017, vol. 287, pp. 73–89. doi: 10.1016/j.geomorph.2016.09.011.
- Eriksen H.Ø., Lauknes T.R., Larsen Y., Dehls J.F., Grydeland T., Bunkholt H. Satellite and ground-based interferometric radar observations of an active rockslide in Northern Norway. In: Engineering Geology for Society and Territory. Vol. 5: Urban geology, sustainable planning and landscape exploitation. Springer, 2015, pp. 167–170. doi: 10.1007/978-3-319-09048-1_33.
- Resop J.P., Lehmann L., Hession W.C. Drone laser scanning for modeling riverscape topography and vegetation: Comparison with traditional aerial lidar. Drones, 2019, vol. 3, no. 2, art. 35, pp. 1–15. doi: 10.3390/drones3020035.
- Lenzi M.A., Mao L., Comiti F. Interannual variation of suspended sediment load and sediment yield in an alpine catchment. Hydrol. Sci. J., 2003, vol. 48, no. 6, pp. 899–915. doi: 10.1623/hysj.48.6.899.51425.
- Tentschert E. Das Langzeitverhalten der Sackungshänge im Speicher Gepatsch (Tirol, Österreich). Felsbau. Essen, Glückauf, 1998, Bd. 16, H. 3, S. 194–200. (In German)
- Beylich A.A. Geomorphology, sediment budget, and relief development in Austdalur, Austfirðir, East Iceland. Arct., Antarct. Alp. Res., 2000, vol. 32, no. 4, pp. 466–477. doi: 10.1080/15230430.2000.12003391.
- Matsuoka N. Solifluction rates, processes and landforms: A global review. Earth-Sci. Rev., 2001, vol. 55, nos. 1–2, pp. 107–134. doi: 10.1016/S0012-8252(01)00057-5.
- Matsuoka N. Solifluction and mudflow on a limestone periglacial slope in the Swiss Alps: 14 years of monitoring. Permafrost Periglacial Processes, 2010, vol. 21, no. 3, pp. 219–240. doi: 10.1002/ppp.678.
- Oppikofer T., Jaboyedoff M., Keusen H.-R. Collapse at the eastern Eiger flank in the Swiss Alps. Nat. Geosci., 2008, vol. 1, no. 8, pp. 531–535. doi: 10.1038/ngeo258.
- Strozzi T., Delaloye R., Kääb A., Ambrosi C., Perruchoud E., Wegmüller U. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J. Geophys. Res., 2010, vol. 115, no. F1, art. F01014, pp. 1–11. doi: 10.1029/2009JF001311.
- Vehling L., Baewert H., Glira P., Moser M., Rohn J., Morche D. Quantification of sediment transport by rockfall and rockslide processes on a proglacial rock slope (Kaunertal, Austria). Geomorphology, 2017, vol. 287, pp. 46–57. doi: 10.1016/j.geomorph.2016.10.032.
- Micheletti N., Lambiel C., Lane S.N. Investigating decadal‐scale geomorphic dynamics in an alpine mountain setting. J. Geophys. Res. Earth Surf., 2015, vol. 120, no. 10, pp. 2155–2175. doi: 10.1002/2015JF003656.
- Kellerer-Pirklbauer A., Kaufmann V. About the relationship between rock glacier velocity and climate parameters in central Austria. Austrian J. Earth Sci., 2012, vol. 105, no. 2, pp. 94–112.
- Kenner R., Bühler Y., Delaloye R., Ginzler C., Phillips M. Monitoring of high alpine mass movements combining laser scanning with digital airborne photogrammetry. Geomorphology, 2014, vol. 206, pp. 492–504. doi: 10.1016/j.geomorph.2013.10.020.
- Ødegård R.S., Isaksen K., Eiken T., Ludvig Sollid J. Terrain analyses and surface velocity measurements of the Hiorthfjellet rock glacier, Svalbard. Permafrost Periglacial Processes, 2003, vol. 14, no. 4, pp. 359–365. doi: 10.1002/ppp.467.
- Liu L., Millar C.I., Westfall R.D., Zebker H.A. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: Inventory and a case study using InSAR. Cryosphere, 2013, vol. 7, no. 4, pp. 1109–1119. doi: 10.5194/tc-7-1109-2013.
- Francou B., Reynaud L. 10 year surficial velocities on a rock glacier (Laurichard, French Alps). Permafrost Periglacial Processes, 1992, vol. 3, no. 3, pp. 209–213. doi: 10.1002/ppp.3430030306.
- Whalley W.B., Palmer C.F., Hamilton S.J., Martin H.E. An assessment of rock glacier sliding using seventeen years of velocity rdalur rock glacier, North Iceland. Arct. Alp. Res., 1995, vol. 27, no. 4, pp. 345–351. doi: 10.2307/1552027.
- Berthling I., Etzelmüller B., Eiken T., Sollid J.L. Rock glaciers on Prins Karls Forland, Svalbard. I: internal structure, flow velocity and morphology. Permafrost Periglacial Processes, 1998, vol. 9, no. 2, pp. 135–145. doi: 10.1002/(SICI)1099-1530(199804/06)9:2<135::AID-PPP284>3.0.CO;2-R.
- Potter Jr. N., Steig E., Clark D., Speece M., Clark G., Updike A.B. Galena Creek rock glacier revisited – new observations on an old controversy. Geogr. Ann. Ser. A, Phys. Geogr., 1998, vol. 80, nos. 3–4, pp. 251–265. doi: 10.1111/j.0435-3676.1998.00041.x.
- Berthling I., Etzelmüller B. Holocene rockwall retreat and the estimation of rock glacier age, Prins Karls Forland, Svalbard. Geogr. Ann. Ser. A, Phys. Geogr., 2007, vol. 89, no. 1, pp. 83–93. doi: 10.1111/j.1468-0459.2007.00309.x.
- Bodin X., Thibert E., Fabre D., Ribolini A., Schoeneich P., Francou B., Reynaud L., Fort M. Two decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps. Permafrost Periglacial Processes, 2009, vol. 20, no. 4, pp. 331–344. doi: 10.1002/ppp.665.
- Wagner S. Creep of alpine permafrost, investigated on the murtel rock glacier. Permafrost Periglacial Processes, 1992, vol. 3, no. 2, pp. 157–162. doi: 10.1002/ppp.3430030214.
- Strunden J., Ehlers T.A., Brehm D., Nettesheim M. Spatial and temporal variations in rockfall determined from TLS measurements in a deglaciated valley, Switzerland. J. Geophys. Res. Earth Surf., 2015, vol. 120, no. 7, pp. 1251–1273. doi: 10.1002/2014JF003274.
- Mohadjer S., Ehlers T.A., Nettesheim M., Ott M.B., Glotzbach C., Drews R. Temporal variations in rockfall and rock-wall retreat rates in a deglaciated valley over the past 11 k.y. Geology, 2020, vol. 48, no. 6, pp. 594–598. doi: 10.1130/G47092.1.
- Matsuoka N., Sakai H. Rockfall activity from an alpine cliff during thawing periods. Geomorphology, 1999, vol. 28, nos. 3–4, pp. 309–328. doi: 10.1016/S0169-555X(98)00116-0.
- Sass O. Temporal variability of rockfall in the Bavarian Alps. Arct., Antarct. Alp. Res., 2005, vol. 37, no. 4, pp. 564–573. doi: 10.1657/1523-0430(2005)037[0564:TVORIT]2.0.CO;2.
- Sailer R., Bollmann E., Hoinkes S., Rieg L., Sproß M., Stötter J. Quantification of geomorphodynamics in glaciated and recently deglaciated terrain based on airborne laser scanning data. Geogr. Ann. Ser. A, Phys. Geogr., 2012, vol. 94, no. 1, pp. 17–32. doi: 10.1111/j.1468-0459.2012.00456.x.
- Kellerer‐Pirklbauer A., Lieb G.K., Avian M., Carrivick J. Climate change and rock fall events in high mountain areas: Numerous and extensive rock falls in 2007 at Mittlerer Burgstall, Central Austria. Geogr. Ann. Ser. A, Phys. Geogr., 2012, vol. 94, no. 1, pp. 59–78. doi: 10.1111/j.1468-0459.2011.00449.x.
- McSaveney M.J. Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand. In: Evans St.G., Degraff J.V. Catastrophic Landslides. Geol. Soc. Am., 2002, pp. 35–70. doi: 10.1130/REG15-p35.
- Ravanel L., Allignol F., Deline P., Gruber St., Ravello M. Rock falls in the Mont Blanc Massif in 2007 and 2008. Landslides, 2010, vol. 7, no. 4, pp. 493–501. doi: 10.1007/s10346-010-0206-z.
- André M.‐F. Geomorphic impact of spring avalanches in Northwest Spitsbergen (79? N). Permafrost Periglacial Processes, 1990, vol. 1, no. 2, pp. 97–110. doi: 10.1002/ppp.3430010203.
- Heckmann T., Wichmann V., Becht M. Quantifying sediment transport by avalanches in the Bavarian Alps – first results. In: Schmidt K.-H., Vetter Th. (Eds.) Late Quaternary Geomorphodynamics. Berlin, Stuttgart, Borntraeger, 2002, pp. 137–152. Z. Geomorphol., suppl. 127.
- Heckmann T., Wichmann V., Becht M. Sediment transport by avalanches in the Bavarian Alps revisited – A perspective on modelling. In: Schmidt K.-H., Becht M., Brunotte E., Eitel B., Schrott L. (Eds.) Geomorphology in Environmental Application. Berlin, Stuttgart, Borntraeger, 2005, pp. 11–25. Z. Geomorphol., suppl. 138.
- Sass O., Heel M., Hoinkis R., Wetzel K.-F. A six-year record of debris transport by avalanches on a wildfire slope (Arnspitze, Tyrol). Z. Geomorphol., 2010, vol. 54, no. 2, pp. 181–193. doi: 10.1127/0372-8854/2010/0054-0009.
- Bell I., Gardner J., De Scally F. An estimate of snow avalanche debris transport, Kaghan Valley, Himalaya, Pakistan. Arct. Alp. Res., 1990, vol. 22, no. 3, pp. 317–321. doi: 10.2307/1551594.
- Freppaz M., Godone D., Filippa G., Maggioni M., Lunardi S., Williams M.W., Zanini E. Soil erosion caused by snow avalanches: A case study in the Aosta Valley (NW Italy). Arct., Antarct. Alp. Res., 2010, vol. 42, no. 4, pp. 412–421. doi: 10.1657/1938-4246-42.4.412.
- Laute K., Beylich A.A. Environmental controls and geomorphic importance of a high-magnitude/low-frequency snow avalanche event in Bødalen, Nordfjord, Western Norway. Geogr. Ann. Ser. A, Phys. Geogr., 2014, vol. 96, no. 4, pp. 465–484. doi: 10.1111/geoa.12069.
- Luckman B.H. Geomorphic work of snow avalanches in the Canadian Rocky Mountains. Arct. Alp. Res., 1978, vol. 10, no. 2, pp. 261–276. doi: 10.2307/1550759.
- Laute K., Beylich A.A. Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology, 2014, vol. 218, pp. 16–34. doi: 10.1016/j.geomorph.2013.06.006.
- Curry A.M. Paraglacial modification of slope form. Earth Surf. Processes Landforms, 1999, vol. 24, no. 13, pp. 1213–1228. doi: 10.1002/(SICI)1096-9837(199912)24:13<1213::AID-ESP32>3.0.CO;2-B.
- Curry A.M., Cleasby V., Zukowskyj P. Paraglacial response of steep, sediment-mantled slopes to post-'Little Ice Age' glacier recession in the central Swiss Alps. J. Quat. Sci., 2006, vol. 21, no. 3, pp. 211–225. doi: 10.1002/jqs.954.
- Dusik J.-M., Neugirg F., Haas F. Slope wash, gully erosion and debris flows on lateral moraines in the Upper Kaunertal, Austria. In: Heckmann T., Morche D. (Eds.) Geomorphology of Proglacial Systems. Springer, 2019, pp. 177–196. doi: 10.1007/978-3-319-94184-4_11.
- Godin E., Fortier D. Geomorphology of a thermo-erosion gully, Bylot Island, Nunavut, Canada. Can. J. Earth Sci., 2012, vol. 49, no. 8, pp. 979–986. doi: 10.1139/E2012-015.
- Carrivick J.L., Geilhausen M., Warburton J., Dickson N.E., Carver St.J., Evans A.J., Brown L.E. Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology, 2013, vol. 188, pp. 83–95. doi: 10.1016/j.geomorph.2012.03.029.
- Morche D., Schmidt K.-H., Sahling I., Herkommer M., Kutschera J. Volume changes of Alpine sediment stores in a state of post-event disequilibrium and the implications for downstream hydrology and bed load transport. Nor. Geogr. Tidsskr. – Norw. J. Geogr., 2008, vol. 62, no. 2, pp. 89–101. doi: 10.1080/00291950802095079.
- Irvine-Fynn T.D.L., Barrand N.E., Porter P.R., Hodson A.J., Murray T. Recent High-Arctic glacial sediment redistribution: A process perspective using airborne lidar. Geomorphology, 2011, vol. 125, no. 1, pp. 27–39. doi: 10.1016/j.geomorph.2010.08.012.
- Baewert H., Morche D. Coarse sediment dynamics in a proglacial fluvial system (Fagge River, Tyrol). Geomorphology, 2014, vol. 218, pp. 88–97. doi: 10.1016/j.geomorph.2013.10.021.
- Haas F., Heckmann T., Wichmann V., Becht M. Quantification and modeling of fluvial bedload discharge from hillslope channels in two alpine catchments (Bavarian Alps, Germany). Z. Geomorphol., 2011, vol. 55, suppl. 3, pp. 147–168. doi: 10.1127/0372-8854/2011/0055S3-0056.
The content is available under the license Creative Commons Attribution 4.0 License.