M.A. Rudakova*, P.Yu. Galitskaya**, S.Yu. Selivanovskaya***
Kazan Federal University, Kazan, 420008 Russia
E-mail: *maychonka@gmail.com, **gpolina33@yandex.ru, ***svetlana.selivanovskaya@kpfu.ru
Received October 19, 2020
REVIEW ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2021.2.177-208
For citation: Rudakova M.A., Galitskaya P.Yu., Selivanovskaya S.Yu. Biosurfactants: Current application trends. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 2, pp. 177–208. doi: 10.26907/2542-064X.2021.2.177-208. (In Russian)
Abstract
This paper discusses the latest trends in studying and using biosurfactants, surfactant biomolecules produced by microorganisms. Biosurfactants were considered as an alternative to synthetic surfactants. The basic principles of producing, screening and characterizing biosurfactants were reviewed. Their physicochemical properties were singled out. The modern understanding of a relationship between the properties of biosurfactants and their practical use was analyzed. Particular attention was paid to the research works focused on the potential use of biosurfactants, as well as the current and major challenges of their production and application in the real sector of economy. The already existing world biosurfactant market was described. An outlook on its possible future development was provided.
Keywords: biosurfactants, microorganisms, characterization methods, areas of application, properties of biosurfactants, producers of biosurfactants, rhamnolipids, surfactin, sofrolipids, trehalolipids
Acknowledgments. This study was funded by the subsidy allocated to Kazan Federal University as part of the state assignment in the sphere of scientific activity, project no. 0671-2020-0055.
Figure Captions
Fig. 1. Areas where biosurfactants are used.
References
- Banat I.M., Thavasi R. (Eds.) Microbial Biosurfactants and Their Environmental and Industrial Applications. Boca Raton, Fla., CRC Press, 2019. 372 p.
- Phulpoto I.A., Yu Z., Hu B., Wang Y., Ndayisenga F., Li J., Liang H., Qazi M.A. Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb. Cell Fact., 2020, vol. 19, art. 145, pp. 1–12. doi: 10.1186/s12934-020-01402-4.
- Sen R. Biosurfactants. In: Advances in Experimental Medicine and Biology. Vol. 672. New York, Springer, 2010. xxviii, 331 p. doi: 10.1007/978-1-4419-5979-9.
- Varjani S.J., Upasani V.N. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour. Technol., 2017, vol. 232, pp. 389–397. doi: 10.1016/j.biortech.2017.02.047.
- Shao B., Liu Z., Zhong H., Zeng G., Liu G., Yu M., Liu Y., Yang X., Li Z., Fang Z., Zhang J., Zhao Ch. Effects of rhamnolipids on microorganism characteristics and applications in composting: A review. Microbiol. Res., 2017, vol. 200, pp. 33–44. doi: 10.1016/j.micres.2017.04.005.
- Gudiña E.J., Rangarajan V., Sen R., Rodrigues L.R. Potential therapeutic applications of biosurfactants. Trends Pharmacol. Sci., 2013, vol. 34, no. 12, pp. 667–675. doi: 10.1016/j.tips.2013.10.002.
- Naughton P.J., Marchant R., Naughton V., Banat I.M. Microbial biosurfactants: Current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol., 2019, vol. 127, no. 1, pp. 12–28. doi: 10.1111/jam.14243.
- Kumar R., Das A.J. Rhamnolipid Biosurfactant. Recent Trends in Production and Application. Singapore, Springer, 2018. xv, 141 p. doi: 10.1007/978-981-13-1289-2.
- Fenibo E.O., Ijoma G.N., Selvarajan R., Chikere C.B. Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms, 2019, vol. 7, no. 11, art. 581, p. 1–29. doi: 10.3390/microorganisms7110581.
- Geetha S.J., Banat I.M., Joshi S.J. Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal. Agric. Biotechnol., 2018, vol. 14, pp. 23–32. doi: 10.1016/j.bcab.2018.01.010.
- Khan M.S., Singh B., Cameotra S. Biological applications of biosurfactants and strategies to potentiate commercial production. In: Biosurfactants. Boca Raton, Fla., CRC Press, 2014, pp. 269–294. doi: 10.1201/b17599-16.
- Biosurfactants Market: By Type; by Application and by Geography – Forecast 2016–2021. IndustryARC, 2018. 165 p. Available at: https://www.researchandmarkets.com/reports/4532369/biosurfactants-market-by-type-by-application#pos-5.
- Ahuja K., Singh S. Biosurfactants Market Trends 2020–2026. Growth Projections. Rep. GMI484, 2020. 564 p. Available at: https://www.gminsights.com/industry-analysis/biosurfactants-market-report.
- Santos D.Kh., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci., 2016, vol. 17, no. 3, art. 401, pp. 1–31. doi: 10.3390/ijms17030401.
- Banat I.M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresour. Technol., 1995, vol. 51, no. 1, pp. 1–12. doi: 10.1016/0960-8524(94)00101-6.
- Poomtien J., Thaniyavarn J., Pinphanichakarn P., Jindamorakot S., Morikawa M. Production and characterization of a biosurfactant from Cyberlindnera samutprakarnensis JP52T. Biosci., Biotechnol., Biochem., 2013, vol. 77, no. 12, pp. 2362–2370. doi: 10.1271/bbb.130434.
- Benincasa M., Contiero J., Manresa M.A., Moraes I.A. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng., 2002, vol. 54, no. 4, pp. 283–288. doi: 10.1016/S0260-8774(01)00214-X.
- Chen S.-Y., Wei Y.-H., Chang J.-S. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl. Microbiol. Biotechnol., 2007, vol. 76, no. 1, pp. 67–74. doi: 10.1007/s00253-007-0980-2.
- Pacwa-Płociniczak M., Płaza G.A., Piotrowska-Seget Z., Cameotra S.S. Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci., vol. 12, no. 1, pp. 633–654. doi: 10.3390/ijms12010633.
- Hošková M., Schreiberová O., Ježdík R., Chudoba J., Masák J., Sigler K., Řezanka T. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour. Technol., 2013, vol. 130, pp. 510–516. doi: 10.1016/j.biortech.2012.12.085.
- Souza E.C., Vessoni-Penna T.C., de Souza Oliveira R.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegrad., 2014, vol. 89, pp. 88–94. doi: 10.1016/j.ibiod.2014.01.007.
- Varjani S., Upasani V. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresour. Technol., 2016, vol. 221, pp. 510–516. doi: 10.1016/j.biortech.2016.09.080.
- Elshikh M., Moya-Ramírez I., Moens H., Roelants S., Soetaert W., Marchant R., Banat I.M. Rhamnolipids and lactonic sophorolipids: Natural antimicrobial surfactants for oral hygiene. J. Appl. Microbiol., 2017, vol. 123, no. 5, pp. 1111–1123. doi: 10.1111/jam.13550.
- Rodrigues L., Banat I.M., Teixeira J., Oliveira R. Biosurfactants: Potential applications in medicine. J. Antimicrob. Chemother., 2006, vol. 57, no. 4, pp. 609–618. doi: 10.1093/jac/dkl024.
- Santos D.K.F., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci., 2016, vol. 17, no. 3, art. 401, pp. 1–31. doi: 10.3390/ijms17030401.
- Janek T., Krasowska A., Czyżnikowska Ż., Łukaszewicz M. Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: An experimental and computational approach. Front. Microbiol., 2018, vol. 9, art. 2441, pp. 1–14. doi: 10.3389/fmicb.2018.02441.
- Kłosowska-Chomiczewska I.E., Mędrzycka K., Hallmann E., Karpenko E., Pokynbroda T., Macierzanka A., Jungnickel C. Rhamnolipid CMC prediction. J. Colloid Interface Sci., 2017, vol. 488, pp. 10–19. doi: 10.1016/j.jcis.2016.10.055.
- Jimoh A.A., Lin J. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Saf., 2019, vol. 184, art. 109607, pp. 1–19. doi: 10.1016/j.ecoenv.2019.109607.
- Drakontis C.E., Amin S. Biosurfactants: Formulations, properties, and applications. Curr. Opin. Colloid Interface Sci., 2020, vol. 48, pp. 77–90. doi: 10.1016/j.cocis.2020.03.013.
- Xia W.-J., Dong H.-P., Yu L., Yu D.-F. Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir. Colloids Surf., A., 2011, vol. 392, no. 1, pp. 124–130. doi: 10.1016/j.colsurfa.2011.09.044.
- Kulakovskaya E., Kulakovskaya T. Physicochemical properties of yeast extracellular glycolipids. In: Extracellular Glycolipids of Yeasts. Biodiversity, Biochemistry, and Prospects. Acad. Press, 2014, pp. 29–34. doi: 10.1016/B978-0-12-420069-2.00003-0.
- Golubev W., Shabalin Y. Microcin production by the yeast Cryptococcus humicola. FEMS Microbiol. Lett., 1994, vol. 119, nos. 1–2, pp. 105–110. doi: 10.1111/j.1574-6968.1994.tb06875.x.
- Kumar R., Das A.J. Rhamnolipid Biosurfactant. Recent Trends in Production and Application. Springer Singapore, 2018. xv, 141 p. doi: 10.1007/978-981-13-1289-2.
- Jahan R., Bodratti A.M., Tsianou M., Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci., 2020, vol. 275, art. 102061, pp. 1–22. doi: 10.1016/j.cis.2019.102061.
- Thavasi R., Sharma S., Jayalakshmi S. Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J. Pet. Environ. Biotechnol., 2013, vol. S1, art. 001, pp. 1–6. doi: 10.4172/2157-7463.S1-001.
- Walter V., Syldatk C., Hausmann R. Screening concepts for the isolation of biosurfactant producing microorganisms. In: Sen R. (Ed.) Biosurfactants. Advances in Experimental Medicine and Biology. Vol. 672. New York, Springer, 2010, pp. 1–13. doi: 10.1007/978-1-4419-5979-9_1.
- Walter V., Syldatk C., Hausmann R. Screening concepts for the isolation of biosurfactant producing microorganisms. In: Madame Curie Bioscience Database. Landes Biosci., 2010–2013. Available at: https://www.ncbi.nlm.nih.gov/books/NBK6189/.
- Mulligan C.N., Cooper D.G., Neufeld R.J. Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol., 1984, vol. 62, no. 4, pp. 311–314.
- Chen C.-Y., Baker S.C., Darton R.C. The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J. Microbiol. Methods, 2007, vol. 70, no. 3, pp. 503–510. doi: 10.1016/j.mimet.2007.06.006.
- Vaux D.J., Cottingham M. Method and apparatus for measuring surface configuration. US Patent no. US 7224470 B2. May 29, 2007, pp. 1–13.
- Aparna A., Srinikethan G., Smitha H. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf., B, 2012, vol. 95, pp. 23–29. doi: 10.1016/j.colsurfb.2012.01.043.
- Rosenberg M., Gutnick D., Rosenberg E. Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett., 1980, vol. 9, no. 1, pp. 29–33.
- Rosenberg M. Bacterial adherence to polystyrene: A replica method of screening for bacterial hydrophobicity. Appl. Environ. Microbiol., 1981, vol. 42, no. 2, pp. 375–377. doi: 10.1128/aem.42.2.375-377.1981.
- Singh N., Pemmaraju S.C., Pruthi P.A., Cameotra S.S., Pruthi V. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Appl. Biochem. Biotechnol., 2013, vol. 169, no. 8, pp. 2374–2391. doi: 10.1007/s12010-013-0149-7.
- Pruthi V., Cameotra S.S. Rapid identification of biosurfactant-producing bacterial strains using a cell surface hydrophobicity technique. Biotechnol. Tech., 1997, vol. 11, no. 9, pp. 671–674. doi: 10.1023/A:1018411427192.
- Ron E.Z., Rosenberg E. Natural roles of biosurfactants. Minireview. Environ. Microbiol., 2001, vol. 3, no. 4, pp. 229–236. doi: 10.1046/j.1462-2920.2001.00190.x.
- Rosenberg M. Microbial adhesion to hydrocarbons: Twenty-five years of doing MATH. FEMS Microbiol. Lett., 2006, vol. 262, no. 2. pp. 129–134. doi: 10.1111/j.1574-6968.2006.00291.x.
- Rosenberg M., Barki M., Bar-Ness R., Goldberg S., Doyle R.J. Microbial adhesion to hydrocarbons (math). Biofouling, 1991, vol. 4, nos. 1–3, pp. 121–128. doi: 10.1080/08927019109378202.
- Bodour A.A., Miller-Maier R.M. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods, 1998, vol. 32, no. 3, pp. 273–280. doi: 10.1016/S0167-7012(98)00031-1.
- Youssef N.H., Duncan K.E., Nagle D.P., Savage K.N., Knapp R.M., McInerney M.J. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods, 2004, vol. 56, no. 3, pp. 339–347. doi: 10.1016/j.mimet.2003.11.001.
- Morikawa M., Hirata Y., Imanaka T. A study on the structure-function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2000, vol. 1488, no. 3, pp. 211–218. doi: 10.1016/S1388-1981(00)00124-4.
- Rosenberg E., Zuckerberg A., Rubinovitz C., Gutnick D.L. Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl. Environ. Microbiol., 1979, vol. 37, no. 3, pp. 402–408. doi: 10.1128/aem.37.3.402-408.1979.
- Daverey A., Pakshirajan K. Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl. Biochem. Biotechnol., 2009, vol. 158, no. 3, pp. 663–674. doi: 10.1007/s12010-008-8449-z.
- Whang L.-M., Liu P.-W.G., Ma C.-C., Cheng S.-S. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater., 2008, vol. 151, no. 1, pp. 155–163. doi: 10.1016/j.jhazmat.2007.05.063.
- Nayarisseri A., Singh P., Singh S.K. Screening, isolation and characterization of biosurfactant-producing Bacillus tequilensis strain ANSKLAB04 from brackish river water. Int. J. Environ. Sci. Technol., 2019, vol. 16, no. 11, pp. 7103–7112. doi: 10.1007/s13762-018-2089-9.
- Satpute S.K., Bhawsar B.D., Dhakephalkar P.K., Chopade B.A. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J. Mar. Sci., 2008, vol. 37, no. 3, pp. 243–250.
- Rotenberg Y., Boruvka L., Neumann A.W. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci., 1983, vol. 93, no. 1, pp. 169–183. doi: 10.1016/0021-9797(83)90396-X.
- Oliva A., Teruel J.A., Aranda F.J., Ortiz A. Effect of a dirhamnolipid biosurfactant on the structure and phase behaviour of dimyristoylphosphatidylserine model membranes. Colloids Surf., B, 2020, vol. 185, art. 110576, pp. 1–8. doi: 10.1016/j.colsurfb.2019.110576.
- Monnier N., Furlan A., Buchoux S., Deleu M., Dauchez M., Rippa S., Sarazin C. Exploring the dual interaction of natural rhamnolipids with plant and fungal biomimetic plasma membranes through biophysical studies. Int. J. Mol. Sci., 2019, vol. 20, no. 5, art. 1009, pp. 1–20. doi: 10.3390/ijms20051009.
- Prabakaran G., Hoti S.L., Rao H.S.P., Vijjapu S. Di-rhamnolipid is a mosquito pupicidal metabolite from Pseudomonas fluorescens (VCRC B426). Acta Trop., 2015, vol. 148, pp. 24–31. doi: 10.1016/j.actatropica.2015.03.003.
For other references see (total number of references: 144)
The content is available under the license Creative Commons Attribution 4.0 License.