V.A. Chadaeva*, R.H. Pshegusov**
Tembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, Nalchik, 360051 Russia
E-mail: *v_chadayeva@mail.ru, **p_rustem@inbox.ru
Received September 24, 2020
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2021.1.115-136
For citation: Chadaeva V.A., Pshegusov R.H. Factors of adventivization of roadside plant communities in the south of the Russian Black Sea Region. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 1, pp. 115–136. doi: 10.26907/2542-064X.2021.1.115-136. (In Russian)
Abstract
Roadside plant communities in the south of the Russian Black Sea region are characterized by relatively high adventivization and low invasibility. In these communities, the adventivization has been rapidly progressing due to the high abundance and competitiveness of invasive species in the region. The total projective cover of codominant species (from invasive species) is also important: an increase in the value of this parameter reduces the levels of adventivization and invasibility. On the Black Sea coast, the highest concentration of roadside plant communities with relatively more competitive invasive species is observed between the Mzymta and Shakhe Rivers, i.e., under the conditions of moderately humid subtropical climate. From the coast to the mountains, the communities with invasive species occur along the flat river valleys (Terrain Ruggedness Index with the probability of finding these communities exceeds 50%).
Keywords: competitiveness of invasive plant species, invasibility of roadside plant communities, Russian Black Sea region, MaxEnt, spatial modeling
Acknowledgments. This study was performed as part of state assignment no. 075-00347-19-00 (Patterns of the Spatiotemporal Dynamics of Meadow and Forest Ecosystems in Mountainous Areas (Russian Western and Central Caucasus)).
Figure Captions
Fig. 1. Location and schematic map of the study area.
Fig. 2. Ratio between the projective cover of invasive species Cova,% and the number of invasive species registered on the sampling plots of 0.5 m2 in size Sа (a), as well as between their number on the sampling plots of 100 m2 in size Na (b).
Fig. 3. Ratio between the invasibility of roadside plant communities (S/N) and the relative competitiveness of invasive plant species Sа/ESа (a), as well as between the total projective cover of codominant species Covd,% (b).
Fig. 4. Plot of responses of points of presence of the studied plant communities to the most important environmental factors. Y-axis – the predicted probability of conditions suitable for the development of the plant communities; X-axis – the value of the variable. The mean values of the factors for the replicates are marked in red; the mean ± standard deviation is indicated in blue. The graphs reflect the dependence of the predicted habitat suitability on the selected variable with regard to its correlation with other variables.
Fig. 5. Distribution map of the areas with different probability of finding the studied plant communities in the south of the Russian Black Sea region. 0–1 – the probability of finding the studied plant communities.
References
- Mirkin B.M., Naumova L.G. The vegetation adventivization through perspective of modern ecological ideas. Zh. Obshch. Biol., 2002, vol. 63, no. 6, pp. 500–508. (In Russian)
- Pyšek P., Jarošík V., Hulme P.E., Pergl J., Hejda M., Schaffner U., Vilà M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biol., 2012, vol. 18, no. 5, pp. 1725–1737. doi: 10.1111/j.1365-2486.2011.02636.x.
- Nunez-Mir G.C., Liebhold A.M., Guo Q., Brockerhoff E.G., Jo I., Ordonez K., Fei S. Biotic resistance to exotic invasions: Its role in forest ecosystems, confounding artifacts, and future directions. Biol. Invasions, 2017, vol. 19, no. 11, pp. 3287–3299. doi: 10.1007/s10530-017-1413-5.
- Wardle D.A., Peltzer D.A. Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biol. Invasions, 2017, vol. 19, no. 11, pp. 3301–3316. doi: 10.1007/s10530-017-1372-x.
- Haider S., Alexander J., Dietz H., Trepl L., Edwards P.J., Kueffer C. The role of bioclimatic origin, residence time and habitat context in shaping non‐native plant distributions along an altitudinal gradient. Biol. Invasions, 2010, vol. 12, no. 12, pp. 4003–4018. doi: 10.1007/s10530-010-9815-7.
- Pickering C.M., Mount A., Wichmann M.C., Bullock J.M. Estimating human-mediated dispersal of seeds within an Australian protected area. Biol. Invasions, 2011, vol. 13, no. 8, pp. 1869–1880. doi: 10.1007/s10530-011-0006-y.
- Pollnac F., Seipel T., Repath Ch., Rew L.J. Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol. Invasions, 2012, vol. 14, no. 8, pp. 1753–1763. doi: 10.1007/s10530-012-0188-y.
- Anderson D.P., Turner M.G., Pearson S.M., Albright Th.P., Peet R.K., Wieben A. Predicting Microstegium vimineum invasion in natural plant communities of the southern Blue Ridge Mountains, USA. Biol. Invasions, 2013, vol. 15, no. 6, pp. 1217–1230. doi: 10.1007/s10530-012-0361-3.
- Davis M.A., Thompson K., Grime J.P. Invasibility: The local mechanism driving community assembly and species diversity. Ecography, 2005, vol. 28, no. 5, pp. 696–704. doi: 10.1111/j.2005.0906-7590.04205.x.
- Funk J.L., Vitousek P.M. Resource-use efficiency and plant invasion in low-resource systems. Nature, 2007, vol. 446, pp. 1079–1081. doi: 10.1038/nature05719.
- McDougall K.L., Alexander J.M., Haider S., Pauchard A., Walsh N.G., Kueffer C. Alien flora of mountains: Global comparisons for the development of local preventive measures against plant invasions. Diversity Distrib., 2010, vol. 17, no. 1, pp. 103–111. doi: 10.1111/j.1472-4642.2010.00713.x.
- Wang W.-B., Wang R.-F., Lei Y.-B., Liu Ch., Han L.-H., Shi X.-D., Feng Y.-L. High resource capture and use efficiency and prolonged growth season contribute to invasiveness of Eupatorium adenophorum. Plant Ecol., 2013, vol. 214, no. 6, pp. 857–868. doi: 10.1007/s11258-013-0214-x.
- Barros A., Pickering C.M. Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the Southern Hemisphere. Mt. Res. Dev., 2014, vol. 34, no. 1, pp. 13–26. doi: 10.1659/MRD-JOURNAL-D-13-00054.1.
- Alexander J.M., Lembrechts J.J., Cavieres L.A., Daehler C., Haider S., Kueffer Ch., Liu G., McDougall K., Milbau A., Pauchard A., Rew L.J., Seipel T. Plant invasions into mountains and alpine ecosystems: Current status and future challenges. Alp. Bot., 2016, vol. 126, no. 2, pp. 89–103. doi: 10.1007/s00035-016-0172-8.
- Pinkovskii M.D., Soltani G.A. Conservation of the Caucasian flora genetic resources at the modern stage. Subtrop. Dekor. Sadovod., 2009, no. 42–1, pp. 46–54 (In Russian)
- Egoshin A.V. Modeling of the spatial distribution of alien plant species using remote sensing data by the example of Paulownia tomentosa. Vestn. Voronezh. Gos. Univ. Ser.: Geogr. Geoekol., 2020, no. 1, pp. 39–47. doi: 10.17308/geo.2020.1/2660. (In Russian)
- Tuniyev B.S., Timukhin I.N. Species composition and comparative-historical aspects of expansion of alien species of vascular plants on the Sochi Black Sea coast (Russia). Nat. Conserv. Res., 2017, vol. 2, no. 4, pp. 2–25. doi: 10.24189/ncr.2017.046.
- Soltani G.A. The adventive arboriflora of Sochi Black Sea region. Bot. Vestn. Sev. Kavk., 2016, no. 1, pp. 42–55. (In Russian)
- Sergin S.Ya., Tsai S.N., Zemtsov R.V. Subtropical climate of the Eastern Black Sea region. Sb. tr. IV Mezhdunar. nauch.-prakt. konf. “Kurortno-rekreatsionnyi kompleks v sisteme regional’nogo razvitiya: innovatsionnye podkhody” [Proc. IV Int. Sci.-Pract. Conf. “Resort and Recreation Complex in the System of Regional Development: Innovative Approaches]. Krasnodar, Kuban. Gos. Univ., 2016, pp. 367–371. (In Russian)
- Rybak E.A. General description of the climate and climate-forming factors in the study area. Nauch. Tr. Sochinskogo Nats. Parka, 2016, no. 7: Georgian box: Retrospective and current state of populations, 2016, pp. 26–31. (In Russian)
- Akatov V.V., Akatova T.V., Eskina T.G. Adventive factors of grass communities in the Western Caucasus: Analysis on the basis of zero model. Nov. Tekhnol., 2009, no. 2, pp. 89–93. (In Russian)
- Akatov V.V., Akatova T.V. Saturation and invasion resistance of non-interactive plant communities. Russ. J. Ecol., 2010, vol. 41, no. 3, pp. 229–236. doi: 10.1134/S1067413610030069.
- Akatov V.V., Akatova T.V., Eskina T.G. Factors of variation in the number of adventive species in herbaceous communities of the Western Caucasus. Russ. J. Ecol., 2010, vol. 41, no. 5, pp. 386–392. doi: 10.1134/S1067413610050048.
- Akatov V.V., Akatova T.V., Eskina T.G., Zagurnaya Yu.S. Relative competitive of adventive plants in herbaceous communities of the Western Caucasus. Russ. J. Biol. Invasions, 2012, vol. 3, no. 4, pp. 235–242. doi: 10.1134/S2075111712040029.
- Baldwin R.A. Use of maximum entropy modeling in wildlife research. Entropy, 2009, vol. 11, no. 4, pp. 854–866. doi: 10.3390/e11040854.
- Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overtom J.McC.M., Peterson T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, vol. 29, no. 2, pp. 129–151. doi: 10.1111/j.2006.0906-7590.04596.x.
- Elith J., Leathwick J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol., Evol. Syst., 2009, vol. 40, pp. 677–697. doi: 10.1146/annurev.ecolsys.110308.120159.
- Title P.O., Bemmels J.B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 2018, vol. 41, pp. 291–307. doi: 10.1111/ecog.02880.
- Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 2005, vol. 25, no. 15, pp. 1965–1978. doi: 10.1002/joc.1276.
- Studley H., Weber K.T. Comparison of image resampling techniques for satellite imagery. In: Weber K.T., Davis K. (Eds.) Final Report: Assessing Post-Fire Recovery of Sagebrush-Steppe Rangelands in Southeastern Idaho. Pocatello, Idaho State Univ., 2011, pp. 185–196.
- PanoplyWin. Available at: http://www.giss.nasa.gov/tools/panoply.
- Warren D.L., Glor R.E., Turelli M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 2010, vol. 33, no. 3, pp. 607–611. doi: 10.1111/j.1600-0587.2009.06142.x.
- The Plant List. A working list of all plant species. Available at: http://www.theplantlist.org.
- Allen R.G., Pereira L.S., Raes D., Smith M. Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements: FAO Irrigation and Drainage Paper 56. Rome, Food Agric. Org. U. N., 1998. 300 p.
- Savabi M.R., Cochrane Th., German E., Ikiz C., Cockshutt N. Modeling evapotranspiration in a sub-tropical climate. J. Environ. Hydrol., 2007, vol. 15, art. 2, pp. 1–15.
- Hafeez M., Chatha Z.A., Khan A.A., Bakhsh A., Basit A., Tahira F. Estimating reference evapotranspiration by Hargreaves and Blaney-Criddle methods in humid subtropical conditions. Curr. Res. Agric. Sci., 2020, vol. 7, no. 1, pp. 15–22. doi: 10.18488/journal.68.2020.71.15.22.
- Novenko E.Yu., Tsyganov A.N., Babeshko K.V., Payne R.J., Li J., Mazei Yu.A., Olchev A.V. Climatic moisture conditions in the north-west of the Mid-Russian Upland during the Holocene. Geogr. Environ. Sustainability, 2019, vol. 12, no. 4, pp. 188–202. doi: 10.24057/2071-9388-2018-62.
- Păltineanu Cr., Mihălescu I.F., Seceleanu I., Dragotă C.S., Vasenciuc F. Ariditatea, seceta, evapotranspiraţia şi cerinţele de apă ale culturilor agricole în România. Constanţa, Ovidius Univ. Press, 2007. 319 p. (In Romanian)
- Riley Sh.J., Degloria S.D., Elliot S.D. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci., 1999, vol. 5, nos. 1–4, pp. 23–27.
- Rózycka M., Migoń P., Michniewicz A. Topographic wetness index and terrain ruggedness index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Z. Geomorphol., 2016, vol. 61, no. 2 (suppl.), pp. 61–80. doi: 10.1127/zfg_suppl/2016/0328.
The content is available under the license Creative Commons Attribution 4.0 License.