A. Ataei a*, V.V. Solovyeva a**, A.A. Rizvanov a***, S.Sh. Arab b****
aKazan Federal University, Kazan, 420008 Russia
bTarbiat Modares University, Tehran, 14115-111 Iran
E-mail: *atousa200.irost@gmail.com, **solovyovavv@gmail.com, ***rizvanov@gmail.com, ****sh.arab@modares.ac.ir
Received March 27, 2020
DOI: 10.26907/2542-064X.2020.4.507-528
For citation: Ataei A., Solovyeva V.V., Rizvanov A.A., Arab S.Sh. Tumor microenvironment: A key contributor to cancer progression, invasion, and drug resistance. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 4, pp. 507–528. doi: 10.26907/2542-064X.2020.4.507-528. (In Russian)
Abstract
The tumor microenvironment is composed of extracellular matrix proteins, mostly collagen, and a wide range of tumor-associated cells, including fibroblasts, neutrophils, macrophages, and blood vessels. These components play a crucial role in supporting tumor growth and proliferation, especially at the early stages of metastasis, as well as determine the physiology of tumor cells. Within the tumor microenvironment, the interaction between tumor cells and tumor-associated cells does not only lead to tumor growth and metastasis, but also induces the epithelial-mesenchymal transition and angiogenesis and contributes to the development of drug and radiation treatment resistance. Ion channels and transporters are the important elements in the drug resistance of tumor cells.
Advancing our understanding of the tumor microenvironment and its processes encouraging tumor progression is of paramount importance for creating effective targeted antitumor drugs of high specificity, i.e., drugs suppressing stromal and immune components of the tumor microenvironment, as well as at extracellular matrix, angiogenic factors, ion channels and transporters.
In this review, we describe the main processes and interactions taking place in the tumor microenvironment and influencing the efficacy of antitumor therapy. We also take a look at stromal and immune cells involved in the tumor development and factors mediating the drug resistance in patients with cancer.
Keywords: inflammation, tumor microenvironment, tumor cells, tumor invasion, drug resistance, ion channels, transporters
Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and supported by the Russian Foundation for Basic Research (project no. 18-04-01133).
Figure Captions
Fig. 1. Main components of the tumor microenvironment.
References
1. Chulpanova D.S., Kitaeva K.V., Tazetdinova L.G., James V., Rizvanov A.A., Solovyeva V.V. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front. Pharmacol., 2018, vol. 9, art. 259, pp. 1–10. doi: 10.3389/fphar.2018.00259.
2. Kitaeva K.V., Rutland C.S., Rizvanov A.A., Solovyeva V.V. Cell culture based in vitro test systems for anticancer drug screening. Front. Bioeng. Biotechnol., 2020, vol. 8, art. 322, pp. 1–9. doi: 10.3389/fbioe.2020.00322.
3. Chulpanova D.S., Kitaeva K.V., Green A.R., Rizvanov A.A., Solovyeva V.V. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front. Cell Dev. Biol., 2020, vol. 8, art. 402, pp. 1–24. doi: 10.3389/fcell.2020.00402.
4. Goswami S., Sahai E., Wyckoff J.B., Cammer M., Cox D., Pixley F.J., Stanley E.R., Segall J.E., Condeelis J.S. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res., 2005, vol. 65, no. 12, pp. 5278–5283. doi: 10.1158/0008-5472.CAN-04-1853.
5. Laviron M., Boissonnas A. Ontogeny of tumor-associated macrophages. Front. Immunol., 2019, vol. 10, art. 1799, pp. 1–7. doi: 10.3389/fimmu.2019.01799.
6. Solovyeva V.V., Salafutdinov I.I., Martynova E.V., Khaiboullina S.F., Rizvanov A.A. Human adipose derived stem cells do not alter cytokine secretion in response to the genetic modification with pEGFP-N2 plasmid DNA. World Appl. Sci. J., 2013, vol. 26, no. 7, pp. 968–972. doi: 10.5829/idosi.wasj.2013.26.07.13539.
7. Solovyeva V.V., Salafutdinov I.I., Tazetdinova L.G., Khaiboullina S.F., Masgutov R.F., Rizvanov A.A. Genetic modification of adipose derived stem cells with recombinant plasmid DNA pBud-VEGF-FGF2 results in increased of IL-8 and MCP-1 secretion. J. Pure Appl. Microbiol., 2014, vol. 8, pp. 523–528.
8. Gilazieva Z.E., Tazetdinova L.G., Arkhipova S.S., Solovyeva V.V., Rizvanov A.A. Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells. BioNanoScience, 2016, vol. 6, no. 4, pp. 534–539. doi: 10.1007/s12668-016-0283-0.
9. Ataei A., Solovyeva V.V., Poorebrahim M., Blatt N.L., Salafutdinov I.I., Sahin F., Kiyasov A.P., Yalvac M.E., Rizvanov A.A. A genome-wide analysis of mrna expression in human tooth germ stem cells treated with pluronic p85. BioNanoScience, 2016, vol. 6, no. 4, pp. 392–402. doi: 10.1007/s12668-016-0254-5.
10. Kitaeva K.V., Prudnikov T.S., Gomzikova M.O., Kletukhina S.K., James V., Rizvanov A.A., Solovyeva V.V. Analysis of the interaction and proliferative activity of adenocarcinoma, peripheral blood mononuclear and mesenchymal stromal cells after co-cultivation in vitro. BioNanoSci., 2019, vol. 9, no. 2, pp. 502–509. doi: 10.1007/s12668-019-00625-z.
11. Chulpanova D.S., Solovyeva V.V., James V., Arkhipova S.S., Gomzikova M.O., Garanina E.E., Akhmetzyanova E.R., Tazetdinova L.G., Khaiboullina S.F., Rizvanov A.A. Human mesenchymal stem cells overexpressing interleukin 2 can suppress proliferation of neuroblastoma cells in co-culture and activate mononuclear cells in vitro. Bioengineering (Basel), 2020, vol. 7, no. 2, art. 59, pp. 1–27. doi: 10.3390/bioengineering7020059.
12. Liu T., Zhou L., Li D., Andl T., Zhang Y. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front. Cell Dev. Biol., 2019, vol. 7, art. 60, pp. 1–14. doi: 10.3389/fcell.2019.00060.
13. Quail D.F., Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, vol. 19, no. 11, pp. 1423–1437. doi: 10.1038/nm.3394.
14. Lu P., Weaver V.M., Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol., 2012, vol. 196, no. 4, pp. 395–406. doi: 10.1083/jcb.201102147.
15. Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 2010, vol. 141, no. 1, pp. 52–67. doi: 10.1016/j.cell.2010.03.015.
16. Comoglio P.M., Trusolino L. Cancer: The matrix is now in control. Nat. Med., 2005, vol. 11, no. 11, pp. 1156–1159. doi: 10.1038/nm1105-1156.
17. Kim S.H., Turnbull J., Guimond S. Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol., 2011, vol. 209, no. 2, pp. 139–151. doi: 10.1530/JOE-10-0377.
18. Butcher D.T., Alliston T., Weaver V.M. A tense situation: Forcing tumour progression. Nat. Rev. Cancer, 2009, vol. 9, no. 2, pp. 108–122. doi: 10.1038/nrc2544.
19. Levental K.R., Yu H., Kass L., Lakins J.N., Egeblad M., Erler J.T., Fong S.F., Csiszar K., Giaccia A., Weninger W., Yamauchi M., Gasser D.L., Weaver V.M. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009, vol. 139, no. 5, pp. 891–906. doi: 10.1016/j.cell.2009.10.027.
20. Tucker G.C. Integrins: Molecular targets in cancer therapy. Curr. Oncol. Rep., 2006, vol. 8, no. 2, pp. 96–103. doi: 10.1007/s11912-006-0043-3.
21. Payne S.L., Fogelgren B., Hess A.R., Seftor E.A., Wiley E.L., Fong S.F., Csiszar K., Hendrix M.J., Kirschmann D.A. Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res., 2005, vol. 65, no. 24, pp. 11429–11436. doi: 10.1158/0008-5472.CAN-05-1274.
22. Erler J.T., Giaccia A.J. Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res., 2006, vol. 66, no. 21, pp. 10238–10241. doi: 10.1158/0008-5472.CAN-06-3197.
23. Cramer D.W., Finn O.J. Epidemiologic perspective on immune-surveillance in cancer. Curr. Opin. Immunol., 2011, vol. 23, no. 2, pp. 265–271. doi: 10.1016/j.coi.2011.01.002.
24. Lowenfels A.B., Maisonneuve P., DiMagno E.P., Elitsur Y., Gates L.K. Jr., Perrault J., Whitcomb D.C. Hereditary pancreatitis and the risk of pancreatic cancer. International hereditary pancreatitis study group. J. Natl. Cancer Inst., 1997, vol. 89, no. 6, pp. 442–446. doi: 10.1093/jnci/89.6.442.
25. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell, 2011, vol. 144, no. 5, pp. 646–674. doi: 10.1016/j.cell.2011.02.013.
26. Knaapen A.M., Gungor N., Schins R.P., Borm P.J., Van Schooten F.J. Neutrophils and respiratory tract DNA damage and mutagenesis: A review. Mutagenesis, 2006, vol. 21, no. 4, pp. 225–236. doi: 10.1093/mutage/gel032.
27. Khattar M., Chen W., Stepkowski S.M. Expanding and converting regulatory T cells: A horizon for immunotherapy. Arch. Immunol. Ther. Exp. (Warsz), 2009, vol. 57, no. 3, pp. 199–204. doi: 10.1007/s00005-009-0021-1.
28. Nishikawa H., Sakaguchi S. Regulatory T cells in tumor immunity. Int. J. Cancer, 2010, vol. 127, no. 4, pp. 759–767. doi: 10.1002/ijc.25429.
29. Chaudhri V.K., Salzler G.G., Dick S.A., Buckman M.S., Sordella R., Karoly E.D., Mohney R., Stiles B.M., Elemento O., Altorki N.K., McGraw T.E. Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol. Cancer Res., 2013, vol. 11, no. 6, pp. 579–592. doi: 10.1158/1541-7786.MCR-12-0437-T.
30. Landskron G., De la Fuente M., Thuwajit P., Thuwajit C., Hermoso M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res., 2014, vol. 2014, art. 149185, pp. 1–19. doi: 10.1155/2014/149185.
31. Badawi A.F., Mostafa M.H., Probert A., O’Connor P.J. Role of schistosomiasis in human bladder cancer: Evidence of association, aetiological factors, and basic mechanisms of carcinogenesis. Eur. J. Cancer Prev., 1995, vol. 4, no. 1, pp. 45–59. doi: 10.1097/00008469-199502000-00004.
32. Williams M.P., Pounder R.E. Helicobacter pylori: From the benign to the malignant. Am. J. Gastroenterol., 1999, vol. 94, suppl. 11, pp. S11–S16. doi: 10.1016/s0002-9270(99)00657-7.
33. McCance D.J. Human papillomaviruses and cancer. Biochim. Biophys. Acta, 1986, vol. 823, no. 3, pp. 195–205. doi: 10.1016/j.radonc.2013.06.004.
34. Cavallaro U., Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer, 2004, vol. 4, no. 2, pp. 118–132. doi: 10.1038/nrc1276.
35. Thiery J.P., Sleeman J.P. Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell Biol., 2006, vol. 7, no. 2, pp. 131–142. doi: 10.1038/nrm1835.
36. Hazan R.B., Phillips G.R., Qiao R.F., Norton L., Aaronson S.A. Exogenous expression of n-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol., 2000, vol. 148, no. 4, pp. 779–790. doi: 10.1083/jcb.148.4.779.
37. Mingaleeva R.N., Solovieva V.V., Blatt N.L., Rizvanov A.A. Application of cell and tissue cultures for potential anti-cancer/oncology drugs screening in vitro. Kletochnaya Transplantol. Tkanevaya Inzheneriya, 2013, vol. 8, no. 2, pp. 20–28. (In Russian)
38. Bates R.C., Mercurio A.M. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell., 2003, vol. 14, no. 5, pp. 1790–1800. doi: 10.1091/mbc.E02-09-0583.
39. Zeisberg M., Hanai J.-i., Sugimoto H., Mammoto T., Charytan D., Strutz F., Kalluri R. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med., 2003, vol. 9, no. 7, pp. 964–968. doi: 10.1038/nm888.
40. Gupta G.P., Massague J. Cancer metastasis: Building a framework. Cell, 2006, vol. 127, no. 4, pp. 679–695. doi: 10.1016/j.cell.2006.11.001.
41. Hoffmann E.K., Lambert I.H. Ion channels and transporters in the development of drug resistance in cancer cells. Philos. Trans. R. Soc., B, 2014, vol. 369, no. 1638, no. 1638, art. 20130109, pp. 1–9 doi: 10.1098/rstb.2013.0109.
42. Arcangeli A. Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk. Am. J. Physiol.: Cell Physiol., 2011, vol. 301, no. 4, pp. 762–771. doi: 10.1152/ajpcell.00113.2011.
43. Cahalan M.D., Chandy K.G. The functional network of ion channels in T lymphocytes. Immunol. Rev., 2009, vol. 231, no. 1, pp. 59–87. doi: 10.1111/j.1600-065X.2009.00816.x.
44. Juliano R.L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta., 1976, vol. 455, no. 1, pp. 152–162. doi: 10.1016/0005-2736(76)90160-7.
45. Vasiliou V., Vasiliou K., Nebert D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics, 2009, vol. 3, no. 3, pp. 281–290. doi: 10.1186/1479-7364-3-3-281.
46. Nagy J.A., Chang S.H., Shih S.C., Dvorak A.M., Dvorak H.F. Heterogeneity of the tumor vasculature. Semin. Thromb. Hemostasis, 2010, vol. 36, no. 3, pp. 321–331. doi: 10.1055/s-0030-1253454.
47. Sun X., Wei Q., Cheng J., Bian Y., Tian C., Hu Y., Li H. Enhanced Stim1 expression is associated with acquired chemo-resistance of cisplatin in osteosarcoma cells. Hum. Cell, 2017, vol. 30, no. 3, pp. 216–225. doi: 10.1007/s13577-017-0167-9.
48. Schmidt S., Liu G., Liu G., Yang W., Honisch S., Pantelakos S., Stournaras C., Honig A., Lang F. Enhanced Orai1 and STIM1 expression as well as store operated Ca2+ entry in therapy resistant ovary carcinoma cells. Oncotarget, 2014, vol. 5, no. 13, pp. 4799–4810. doi: 10.18632/oncotarget.2035.
49. Kondratska K., Kondratskyi A., Yassine M., Lemonnier L., Lepage G., Morabito A., Skryma R., Prevarskaya N. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. Biochim. Biophys. Acta, 2014, vol. 1843, no. 10, pp. 2263–2269. doi: 10.1016/j.bbamcr.2014.02.012.
50. Tang B.D., Xia X., Lv X.F., Yu B.X., Yuan J.N., Mai X.Y., Shang J.Y., Zhou J.G., Liang S.J., Pang R.P. Inhibition of Orai1-mediated Ca2+ entry enhances chemosensitivity of HepG2 hepatocarcinoma cells to 5-fluorouracil. J. Cell. Mol. Med., 2017, vol. 21, no. 5, pp. 904–915. doi: 10.1111/jcmm.13029.
51. Wang L., Hao J., Zhang Y., Yang Z., Cao Y., Lu W., Shu Y., Jiang L., Hu Y., Lv W., Liu Y., Dong P. Orai1 mediates tumor-promoting store-operated Ca2+ entry in human gastrointestinal stromal tumors via c-KIT and the extracellular signal-regulated kinase pathway. Tumour Biol., 2017, vol. 39, no. 2, art. 1010428317691426, pp. 1–11. doi: 10.1177/1010428317691426.
52. Hasna J., Hague F., Rodat-Despoix L., Geerts D., Leroy C., Tulasne D., Ouadid-Ahidouch H., Kischel P. Orai3 calcium channel and resistance to chemotherapy in breast cancer cells: The p53 connection. Cell Death Differ., 2018, vol. 25, no. 4, pp. 693–707. doi: 10.1038/s41418-017-0007-1.
53. Nabissi M., Morelli M.B., Santoni M., Santoni G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis, 2013, vol. 34, no. 1, pp. 48–57. doi: 10.1093/carcin/bgs328.
54. Deveci H.A., Naziroglu M., Nur G. 5-Fluorouracil-induced mitochondrial oxidative cytotoxicity and apoptosis are increased in MCF-7 human breast cancer cells by TRPV1 channel activation but not Hypericum perforatum treatment. Mol. Cell. Biochem., 2018, vol. 439, nos. 1–2, pp. 189–198. doi: 10.1007/s11010-017-3147-1.
55. Almasi S., Kennedy B.E., El-Aghil M., Sterea A.M., Gujar S., Partida-Sanchez S., El Hiani Y. TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway. J. Biol. Chem., 2018, vol. 293, no. 10, pp. 3637–3650. doi: 10.1074/jbc.M117.817635.
56. Koh D.W., Powell D.P., Blake S.D., Hoffman J.L., Hopkins M.M., Feng X. Enhanced cytotoxicity in triple-negative and estrogen receptorpositive breast adenocarcinoma cells due to inhibition of the transient receptor potential melastatin-2 channel. Oncol. Rep., 2015, vol. 34, no. 3, pp. 1589–1598. doi: 10.3892/or.2015.4131.
57. Liu X., Zou J., Su J., Lu Y., Zhang J., Li L., Yin F. Downregulation of transient receptor potential cation channel, subfamily C, member 1 contributes to drug resistance and high histological grade in ovarian cancer. Int. J. Oncol., 2016, vol. 48, no. 1, pp. 243–252. doi: 10.3892/ijo.2015.3254.
58. Zhang P., Liu X., Li H., Chen Z., Yao X., Jin J., Ma X. TRPC5-induced autophagy promotes drug resistance in breast carcinoma via CaMKKβ/AMPKα/mTOR pathway. Sci. Rep., 2017, vol. 7, no. 1, art. 3158, pp. 1–13. doi: 10.1038/s41598-017-03230-w.
59. Wen L., Liang C., Chen E., Chen W., Liang F., Zhi X., Wei T., Xue F., Li G., Yang Q., Gong W., Feng X., Bai X., Liang T. Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Sci. Rep., 2016, vol. 6, art. 23269, pp. 1–14. doi: 10.1038/srep23269.
60. Tsunoda T., Koga H., Yokomizo A., Tatsugami K., Eto M., Inokuchi J., Hirata A., Masuda K., Okumura K., Naito S. Inositol 1,4,5-trisphosphate (IP3) receptor type1 (IP3R1) modulates the acquisition of cisplatin resistance in bladder cancer cell lines. Oncogene, 2005, vol. 24, no. 8, pp. 1396–1402. doi: 10.1038/sj.onc.1208313.
61. Schrödl K., Oelmez H., Edelmann M., Huber R.M., Bergner A. Altered Ca2+-homeostasis of cisplatin-treated and low level resistant non-small-cell and small-cell lung cancer cells. Cell. Oncol., 2009, vol. 31, no. 4, pp. 301–315. doi: 10.3233/CLO-2009-0472.
62. Pillozzi S., D’Amico M., Bartoli G., Gasparoli L., Petroni G., Crociani O., Marzo T., Guerriero A., Messori L., Severi M., Udisti R., Wulff H., Chandy K.G., Becchetti A., Arcangeli A. The combined activation of KCa3.1 and inhibition of Kv11.1/hERG1 currents contribute to overcome cisplatin resistance in colorectal cancer cells. Br. J. Cancer, 2018, vol. 118, no. 2, pp. 200–212. doi: 10.1038/bjc.2017.392.
63. Agarwal J.R., Griesinger F., Stuhmer W., Pardo L.A. The potassium channel ether a go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol. Cancer, 2010, vol. 9, art. 18, pp. 1–16. doi: 10.1186/1476-4598-9-18.
64. Chen Q., Liu X., Luo Z., Wang S., Lin J., Xie Z., Li M., Li C., Cao H., Huang Q., Mao J., Xu B. Chloride channel-3 mediates multidrug resistance of cancer by upregulating P-glycoprotein expression. J. Cell. Physiol., 2019, vol. 234, no. 5, pp. 6611–6623. doi: 10.1002/jcp.27402.
65. Marin M., Poret A., Maillet G., Leboulenger F., Le Foll F. Regulation of volume-sensitive Cl- channels in multi-drug resistant MCF7 cells. Biochem. Biophys. Res. Commun., 2005, vol. 334, no. 4, pp. 1266–1278. doi: 10.1016/j.bbrc.2005.07.010.
66. Chen Y., Wei X., Yan P., Han Y., Sun S., Wu K., Fan D. Human mitochondrial Mrs2 protein promotes multidrug resistance in gastric cancer cells by regulating p27, cyclin D1 expression and cytochrome C release. Cancer Biol. Ther., 2009, vol. 8, no. 7, pp. 607–614. doi: 10.4161/cbt.8.7.7920.
67. Kischel P., Girault A., Rodat-Despoix L., Chamlali M., Radoslavova S., Abou Daya H., Lefebvre T., Foulon A., Rybarczyk P., Hague F., Dhennin-Duthille I., Gautier M., Ouadid-Ahidouch H. Ion channels: New actors playing in chemotherapeutic resistance. Cancers (Basel), 2019, vol. 11, no. 3, art. 376, pp. 1–28. doi: 10.3390/cancers11030376.
68. Hilgarth M. Aspects in quality assurance in gynecological cytology. Der Gynäkologe, 1990, vol. 23, no. 6, pp. 312–318.
69. Balaji S.A., Udupa N., Chamallamudi M.R., Gupta V., Rangarajan A. Role of the drug transporter ABCC3 in breast cancer chemoresistance. PLoS ONE, 2016, vol. 11, no. 5, art. e0155013, pp. 1–22. doi: 10.1371/journal.pone.0155013.
70. Abbasifarid E., Sajjadi-Jazi S.M., Beheshtian M., Samimi H., Larijani B., Haghpanah V. The role of ATP-binding cassette transporters in the chemoresistance of anaplastic thyroid cancer: A systematic review. Endocrinology, 2019, vol. 160, no. 8, pp. 2015–2023. doi: 10.1210/en.2019-00241.
71. Bindea G., Mlecnik B., Fridman W.H., Pages F., Galon J. Natural immunity to cancer in humans. Curr. Opin. Immunol., 2010, vol. 22, no. 2, pp. 215–222. doi: 10.1016/j.coi.2010.02.006.
72. Colden-Stanfield M. Adhesion-dependent modulation of macrophage K+ channels. Adv. Exp. Med. Biol., 2010, vol. 674, pp. 81–94. doi: 10.1007/978-1-4419-6066-5_8.
73. Lopez-Castejon G., Theaker J., Pelegrin P., Clifton A.D., Braddock M., Surprenant A. P2x7 receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. J. Immunol., 2010, vol. 185, no. 4, pp. 2611–2619. doi: 10.4049/jimmunol.1000436.
74. Bukowski K., Kciuk M., Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, vol. 21, no. 9, art. 3233, pp. 1–24. doi: 10.3390/ijms21093233.
75. Ham I.H., Oh H.J., Jin H., Bae C.A., Jeon S.M., Choi K.S., Son S.Y., Han S.U., Brekken R.A., Lee D., Hur H. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol. Cancer, 2019, vol. 18, no. 1, art. 68, pp. 1–14. doi: 10.1186/s12943-019-0972-8.
76. Wang Y., Qu Y., Niu X.L., Sun W.J., Zhang X.L., Li L.Z. Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine, 2011, vol. 56, no. 2, pp. 365–375. doi: 10.1016/j.cyto.2011.06.005.
77. Song S., Wientjes M.G., Gan Y., Au J.L. Fibroblast growth factors: An epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 15, pp. 8658–8663. doi: 10.1073/pnas.140210697.
78. Shain K.H., Dalton W.S. Cell adhesion is a key determinant in de novo multidrug resistance (MDR): New targets for the prevention of acquired MDR. Mol. Cancer Ther., 2001, vol. 1, no. 1, pp. 69–78.
79. Shain K.H., Dalton W.S. Environmental-mediated drug resistance: A target for multiple myeloma therapy. Expert Rev. Hematol., 2009, vol. 2, no. 6, pp. 649–662. doi: 10.1586/ehm.09.55.
80. Castells M., Thibault B., Delord J.P., Couderc B. Implication of tumor microenvironment in chemoresistance: Tumor-associated stromal cells protect tumor cells from cell death. Int. J. Mol. Sci., 2012, vol. 13, no. 8, pp. 9545–9571. doi: 10.3390/ijms13089545.
The content is available under the license Creative Commons Attribution 4.0 License.