L.R. Biktasheva*, A.A. Saveliev**, S.Y. Selivanovskaya***, P.Y. Galitskaya****
Kazan Federal University, Kazan, 420008 Russia
E-mail: *biktasheval@mail.ru, **Anatoly.Saveliev.aka.saa@gmail.com, ***svetlana.selivanovskaya@kpfu.ru, ****gpolina33@yandex.ru
Received May 20, 2020
DOI: 10.26907/2542-064X.2020.3.393-412
For citation: Biktasheva L.R., Saveliev A.A., Selivanovskaya S.Y., Galitskaya P.Y. Bacterial and fungal community shifts during self-restoration of oil-polluted soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 3, pp. 393–412. doi: 10.26907/2542-064X.2020.3.393-412. (In Russian)
Abstract
Oil pollution is a serious environmental problem, despite the capacity of soils to self-restoration. In this study, we analyzed the bacterial and fungal communities of six samples of natural soils that are in the process of self-restoration after an oil spill and their uncontaminated analogues. The content of hydrocarbons in the soils varied from 3% to 14%, with the dominance of aliphatic and aromatic hydrocarbon fractions in all samples (more than 50% in total amount). The Illumina MiSeq method revealed that the Actinobacteria, Proteobacteria, Acidobacteria, and Bacteroidetes types of bacteria prevailed in the uncontaminated soils. In the polluted soils, there was a pronounced dominance of bacteria of the Actinobacteria type (38–66%), mainly due to a sharp increase in the relative abundance of bacteria of the Nocardiaceae family (7–32%) known for their hydrocarbon-oxidizing activity. In four samples of uncontaminated soils, the Ascomycota type of fungi dominated; in the two other samples, most fungi belonged to the Ascomycota and Basidiomycota types. The structure of the fungal communities differed between the polluted and uncontaminated soils; however, the analysis of these differences showed no general patterns. The differences observed in the response of the bacterial and fungal communities to oil pollution are most likely to be associated with different metabolic capacities for hydrocarbons in bacteria and fungi.
Keywords: oil-polluted soils, microbial community, hydrocarbon-oxidizing species
Acknowledgments. The study was supported by the Russian Science Foundation (project no. 17-74-20183).
Figure Captions
Fig. 1. Abundance of bacteria (a) and fungi (b). Mean values and standard error (SE) are shown.
Fig. 2. Bacterial community structure at the level of types.
Fig. 3. Fungal community structure at the level of types.
Fig. 4. β-diversity of the bacterial (a) and fungal (b) communities analyzed by the NMDS method.
References
1. Agbogidi O.M., Eruotor P.G., Akparobi S.O. Effects of crude oil levels on the growth of maize (Zea mays L.). Am. J. Food Technol., 2007, vol. 2, no. 6, pp. 529–535. doi: 10.3923/ajft.2007.529.535.
2. Marin-Garcia J.A., Tomas J.M. Deconstructing AMO framework: A systematic review. Intangible Cap., 2016, vol. 12, no. 4, pp. 1040–1087. doi: 10.3926/ic.838.
3. Sutton N.B., Maphosa F., Morillo J.A., Al-Soud W.A., Langenhoff A.A.M., Grotenhuis T., Rijnaarts H.H.M., Smidt H. Impact of long-term diesel contamination on soil microbial community structure. Appl. Environ. Microbiol., 2013, vol. 79, no. 2, pp. 619–630. doi: 10.1128/AEM.02747-12.
4. Liu Q., Tang J., Gao K., Gurav R., Giesy J.P. Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci. Rep., 2017, vol. 7, no. 1, art. 14856, pp. 1–12. doi: 10.1038/s41598-017-14032-5.
5. Fierer N., Jackson R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 3, pp. 626–631. doi: 10.1073/pnas.0507535103.
6. Bundy J.G., Paton G.I., Campbell C.D. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol., 2002, vol. 92, no. 2, pp. 276–288. doi: 10.1046/j.1365-2672.2002.01528.x.
7. Powell S.M., Bowman J.P., Ferguson S.H., Snape I. The importance of soil characteristics to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island. Soil Biol. Biochem., 2010, vol. 42, no. 11, pp. 2012–2021. doi: 10.1016/j.soilbio.2010.07.027.
8. Bergsveinson J., Perry B.J., Simpson G.L., Yost C.K., Schutzman R.J., Hall B.D., Cameron A.D.S. Spatial analysis of a hydrocarbon waste-remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure. Microb. Biotechnol., 2019, vol. 12, no. 6, pp. 1199–1209. doi: 10.1111/1751-7915.13397.
9. Nacke H., Will C., Herzog S., Nowka B., Engelhaupt M., Daniel R. Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiol. Ecol., 2011, vol. 78, no. 1, pp. 188–201. doi: 10.1111/j.1574-6941.2011.01088.x.
10. Roesch L.F.W., Fulthorpe R.R., Riva A., Casella G., Hadwin A.K.M., Kent A.D., Daroub S.H., Camargo F.A.O., Farmerie W.G., Triplett E.W. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J., 2007, vol. 1, no. 4, pp. 283–290. doi: 10.1038/ismej.2007.53.
11. Girvan M.S., Bullimore J., Pretty J.N., Osborn A.M., Ball A.S. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol., 2003, vol. 69, no. 3, pp. 1800–1809. doi: 10.1128/aem.69.3.1800-1809.2003.
12. Lauber C.L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol., 2009, vol. 75, no. 15, pp. 5111–5120. doi: 10.1128/AEM.00335-09.
13. Onwurah I.N.E., Ogugua V.N., Onyike N.B., Ochonogor A.E., Otitoju O.F. Crude oils spills in the environment, effects and some innovative clean-up biotechnologies. Int. J. Environ. Res., 2007, vol. 1, no. 4, pp. 307–320. doi: 10.22059/IJER.2010.142.
14. Singh A., Singh B., Ward O. Potential applications of bioprocess technology in petroleum industry. Biodegradation, 2012, vol. 23, no. 6, pp. 865–880. doi: 10.1007/s10532-012-9577-2.
15. Hassanshahian M., Bayat Z., Cappello S., Smedile F., Yakimov M. Comparison the effects of bioaugmentation versus biostimulation on marine microbial community by PCR-DGGE: A mesocosm scale. J. Environ. Sci., 2016, vol. 43, pp. 136–146. doi: 10.1016/j.jes.2015.09.013.
16. Ansari N., Hassanshahian M., Ravan H. Study the microbial communities’ changes in desert and farmland soil after crude oil pollution. Int. J. Environ. Res., 2018, vol. 12, no. 3, pp. 391–398. doi: 10.1007/s41742-018-0099-6.
17. Abbasian F., Lockington R., Mallavarapu M., Naidu R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl. Biochem. Biotechnol., 2015, vol. 176, no. 3, pp. 670–699. doi: 10.1007/s12010-015-1603-5.
18. Varjani S.J., Upasani V.N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad., 2017, vol. 120, pp. 71–83. doi: 10.1016/j.ibiod.2017.02.006.
19. Aydin S., Karaçay H.A., Shahi A., Gökçe S., Ince B., Ince O. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol. Rev., 2017, vol. 31, no. 2, pp. 61–72. doi: 10.1016/j.fbr.2016.12.001.
20. Fernández-Luqueño F., Valenzuela-Encinas C., Marsch R., Martínez-Suárez C., Vázquez-Núñez E., Dendooven L. Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: A review. Environ. Sci. Pollut. Res., 2011, vol. 18, no. 1, pp. 12–30. doi: 10.1007/s11356-010-0371-6.
21. Shahi A., Aydin S., Ince B., Ince O. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicol. Environ. Saf., 2016, vol. 125, pp. 153–160. doi: 10.1016/j.ecoenv.2015.11.029.
22. El Amrani A., Dumas A.S., Wick L.Y., Yergeau E., Berthomé R. “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environ. Sci. Technol., 2015, vol. 49, no. 19, pp. 11281–11291. doi: 10.1021/acs.est.5b01740.
23. Zhou Z.F., Wang M.X., Zuo X.H., Yao Y.H. Comparative investigation of bacterial, fungal, and archaeal community structures in soils in a typical oilfield in Jianghan, China. Arch. Environ. Contam. Toxicol., 2017, vol. 72, no. 1, pp. 65–77. doi: 10.1007/s00244-016-0333-1.
24. Zhong Z., Wang X., Zhang X., Zhang W., Xu Y., Ren C., Han X., Yang G. Edaphic factors but not plant characteristics mainly alter soil microbial properties along a restoration chronosequence of Pinus tabulaeformis stands on Mt. Ziwuling, China. For. Ecol. Manage., 2019, vol. 453, art. 117625, pp. 1–11. doi: 10.1016/j.foreco.2019.117625.
25. Borowik A., Wyszkowska J., Oszust K. Functional diversity of fungal communities in soil contaminated with diesel oil. Front. Microbiol., 2017, vol. 8, art. 1862, pp. 1–11. doi: 10.3389/fmicb.2017.01862.
26. Xu X., Liu W., Tian S., Wang W., Qi Q., Jiang P., Gao X., Li F., Li H., Yu H. Petroleum Hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Front. Microbiol., 2018, vol. 9, art. 2885, pp. 1–11. doi: 10.3389/fmicb.2018.02885.
27. State Standard 17.4.4.02-2017. Nature conservation (SSNP). Soils. Methods of sample collection and preparation for chemical, bacteriological, helminthological analysis. Moscow, Standartinform, 2017. 12 p. (In Russian)
28. Uspenskii V.A., Rodionova K.F., Gorskaya A.I., Shishkova A.P. (Eds.) Rukovodstvo po analizu bitumov i rasseyannogo organicheskogo veshchestva gornykh porod [A Handbook for Analysis of Bitumens and Dispersed Organic Matter in Rocks]. Leningrad, Nedra, 1966. 316 p. (In Russian)
29. Khusnutdinov I.Sh., Bukharov S.V., Goncharova I.N. Opredelenie soderzhaniya smolisto-asfal’tovykh veshchestv [Measurement of Resin Asphalt Content]. Kazan, Kazan. Gos. Tekhnol. Univ., 2006. 44 p. (In Russian)
30. Muyzer G., De Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 1993, vol. 59, no. 3, pp. 695–700. doi: 10.1128/AEM.59.3.695-700.1993.
31. Liu C.M., Kachur S., Dwan M.G., Abraham A.G., Aziz M., Hsueh P.R., Huang Y.T., Busch J.D., Lamit L.J., Gehring C.A., Keim P., Price L.B. FungiQuant: A broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol., 2012, vol. 12, art. 255, pp. 1–11. doi: 10.1186/1471-2180-12-255.
32. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 2010, vol. 7, no. 5, pp. 335–336. doi: 10.1038/nmeth.f.303.
33. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 2007, vol. 73, no. 16, pp. 5261–5267. doi: 10.1128/AEM.00062-07.
34. Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, vol. 26, no. 19, pp. 2460–2461. doi: 10.1093/bioinformatics/btq461.
35. Faith D.P., Minchin P.R., Belbin L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio, 1987, vol. 69, no. 1, pp. 57–68. doi: 10.1007/BF00038687.
36. Martin-Sanchez P.M., Gorbushina A.A., Toepel J. Quantification of microbial load in diesel storage tanks using culture- and qPCR-based approaches. Int. Biodeterior. Biodegrad., 2018, vol. 126, pp. 216–223. doi: 10.1016/j.ibiod.2016.04.009.
37. Peng M., Zi X., Wang Q. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16s rRNA genes. Int. J. Environ. Res. Public Health, 2015, vol. 12, no. 10, pp. 12002–12015. doi: 10.3390/ijerph121012002.
38. Samanta S.K., Singh O.V., Jain R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol., 2002, vol. 20, no. 6, pp. 243–248. doi: 10.1016/s0167-7799(02)01943-1.
39. Ghosal D., Ghosh S., Dutta T.K., Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol., 2016, vol. 7, art. 1369, pp. 1–27. doi: 10.3389/fmicb.2016.01369.
40. Lee E.-H., Cho K.-S. Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. Chemosphere, 2008, vol. 71, no. 9, pp. 1738–1744. doi: 10.1016/j.chemosphere.2007.12.009.
41. Nam B.H., Park B.J., Yun H.S. Biodegradation of JP-8 by Rhodococcus fascians isolated from petroleum contaminated soil. Korean Chem. Eng. Res., 2008, vol. 46, no. 4, pp. 819–823. (In Korean)
42. Zhou H., Huang X., Bu K., Wen F., Zhang D., Zhang C. Fungal proliferation and hydrocarbon removal during biostimulation of oily sludge with high total petroleum hydrocarbon. Environ. Sci. Pollut. Res., 2019, vol. 26, no. 32, pp. 33192–33201. doi: 10.1007/s11356-019-06432-z.
43. Liang Y., Zhang X., Wang J., Li G. Spatial variations of hydrocarbon contamination and soil properties in oil exploring fields across China. J. Hazard. Mater., 2012, vols. 241–242, pp. 371–378. doi: 10.1016/j.jhazmat.2012.09.055.
44. Summerbell R.C. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: Influence of site factors on fungal distributions. Stud. Mycol., 2005, vol. 53. pp. 121–145. doi: 10.3114/sim.53.1.121.
45. Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem., 2008, vol. 40, no. 1, pp. 1–10. doi: 10.1016/j.soilbio.2007.07.002.
46. Guo G., Tian F., Ding K., Wang L., Liu T., Yang F. Effect of a bacterial consortium on the degradation of polycyclic aromatic hydrocarbons and bacterial community composition in Chinese soils. Int. Biodeterior. Biodegrad., 2017, vol. 123, pp. 56–62. doi: 10.1016/j.ibiod.2017.04.022.
47. Yang Z., Xu X., Dai M., Wang L., Shi X., Guo R. Combination of bioaugmentation and biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid. J. Hazard. Mater., 2018. vol. 353, pp. 490–495. doi: 10.1016/j.jhazmat.2018.04.052.
48. Rybczyńska-Tkaczyk K., Korniłłowicz-Kowalska T. Activities of versatile peroxidase in cultures of Clonostachys rosea f. catenulata and Clonostachys rosea f. rosea during biotransformation of alkali lignin. J. AOAC Int., 2018, vol. 101, no. 5, pp. 1415–1421. doi: 10.5740/jaoacint.18-0058.
The content is available under the license Creative Commons Attribution 4.0 License.