E.E. Garanina*, E.V. Martynova**, K.Y. Ivanov***, A.A. Rizvanov****, S.F. Khaiboullina*****
Kazan Federal University, Kazan, 420008 Russia
E-mail: *kathryn.cherenkova@gmail.com, **ignietferro.venivedivici@gmail.com,
***kos.ivanoff2010@yandex.ru, ****rizvanov@gmail.com, *****sv.khaiboullina@gmail.com
Received October 10, 2019
DOI: 10.26907/2542-064X.2020.1.80-111
For citation: Garanina E.E., Martynova E.V., Ivanov K.Y., Rizvanov A.A., Khaiboullina S.F. Inflammasomes: Role in disease pathogenesis and therapeutic potential. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 1, pp. 80–111. doi: 10.26907/2542-064X.2020.1.80-111. (In Russian)
Abstract
The structure of inflammasomes, history of their discovery, and their potential use as therapeutic targets were discussed. Inflammasomes represent cytosolic polyprotein complexes that are formed in response to various external and internal stimuli, including viral and bacterial infections. The main products of inflammasomes are pro-inflammatory cytokines: interleukin-1-beta (IL-1β) and interleukin-18 (IL-18). Both cytokines are formed through proteolytic cleavage by active caspase-1. Caspase-1 activation leads to a special form of cell death called pyroptosis. Depending on external stimuli (bacterial, viral infections, cell damage, changes in ion concentration), various types of inflammasomes are activated. The possibilities of using caspase-1 inhibitors and other drugs in medicine were described.
Keywords: inflammasomes, caspase-1, cryopyrin, NOD receptors, inflammation, cytokines, pyroptosis
Acknowledgments. The study was supported by the grant of the President of the Russian Federation (project no. MK-2393.2019.4) and performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. A.A. Rizvanov's research was funded by the state assignment no. 0671-2020-0058 of the Ministry of Science and Higher Education of the Russian Federation.
Figure Captions
Fig. 1. Schematic structure of the inflammasome. A – NLRP1 inflammasome is activated in response to the lethal toxin B. anthracis and muramyldipeptide (MDP). B – NLRP3 inflammasome is activated upon ingestion of viral RNA, as well as various danger signals, C – the mechanism of NLRP6 inflammasome activation is poorly understood.
Fig. 2. Schematic structure of the inflammasome: A – NLRC4 inflammasome is activated upon detection of gram-negative bacteria; B – AIM-2 inflammasome is activated upon detection of double-stranded DNA.
Fig. 3. Scheme of canonical (A) and non-canonical (B) signaling pathways of the inflammasomes: A – canonical activation of inflammasomes (canonical signaling pathways). (i) Lipopolysaccharide (LPS) is recognized by TLR4, (ii) activating the NF-κB signaling pathway, (iii) resulting in an increase in the transcription level of inactive pro-IL-1β, pro-IL-18, and pro-caspase-11 precursors (iv). A secondary inflammatory signal (eg, PAMP or DAMP) triggers the formation of an inflammasoma (vi). Hydrolysis and activation of pro-caspase-1, pro-IL-1β, and pro-IL-18 occurs, (vii) with further secretion of IL-1β and IL-18 from the cell; B – non-canonical activation by inflammasome. (i) With an excessive content of free LPS or in vacuoles, LPS is able to penetrate into the intracellular space independently of TLR4. (ii) Guanilate-binding proteins (GBPs) ensure vacuole lysis, thereby helping LPS to enter the cytosol of the cell. (iii) Pro-caspase-11 detects cytosolic LPS (iv), initiating inflammasome assembly and pyroptosis (v). (vi) Assembly of the NLRP3-inflammasome also results in the secretion of IL-1β and IL-18, characteristic of the canonical signaling pathway.
References
1. Basset C., Holton J., O'Mahony R., Roitt I. Innate immunity and pathogen-host interaction. Vaccine, 2003, vol. 21, suppl. 2, pp. S12–S23. doi: 10.1016/s0264-410x(03)00195-6.
2. Medzhitov R., Janeway C.A. Jr. Innate immunity: Impact on the adaptive immune response. Curr. Opin. Immunol., 1997, vol. 9, no. 1, pp. 4–9. doi: 10.1016/s0952-7915(97)80152-5.
3. Medzhitov R., Janeway C.A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science, 2002, vol. 296, no. 5566, pp. 298–300. doi: 10.1126/science.1068883.
4. Janeway C.A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today, 1992, vol. 13, no. 1, pp. 11–16. doi: 10.1016/0167-5699(92)90198-G.
5. Janeway C.A. Jr. How the immune system works to protect the host from infection: A personal view. Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 13, pp. 7461–7468. doi: 10.1073/pnas.131202998.
6. Matzinger P. The danger model: A renewed sense of self. Science, 2002, vol. 296, no. 5566, pp. 301–305. doi: 10.1126/science.1071059.
7. Seong S.Y., Matzinger P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol., 2004, vol. 4, no. 6, pp. 469–478. doi: 10.1038/nri1372.
8. Kawa T., Akira S. TLR signaling. Cell Death Differ., 2006, vol. 13, no. 5, pp. 816–825. doi: 10.1038/sj.cdd.4401850.
9. Evavold C.L., Kagan J.C. How inflammasomes inform adaptive immunity. J. Mol. Biol., 2018, vol. 430, no. 2, pp. 217–237. doi: 10.1016/j.jmb.2017.09.019.
10. Miceli-Richard C., Lesage S., Rybojad M., Prieur A.M., Manouvrier-Hanu S., Hafner R., Chamaillard M., Zouali H., Thomas G., Hugot J.P. CARD15 mutations in Blau syndrome. Nat. Genet., 2001, vol. 29, no. 1, pp. 19–20. doi: 10.1038/ng720.
11. Murillo L., Crusius J.B., van Bodegraven A.A., Alizadeh B.Z., Pena A.S. CARD15 gene and the classification of Crohn's disease. Immunogenetics, 2002, vol. 54, no. 1, pp. 59–61. doi: 10.1007/s00251-002-0440-1.
12. Ogura Y., Bonen D.K., Inohara N., Nicolae D.L., Chen F.F., Ramos R., Britton H., Moran T., Karaliuskas R., Duerr R.H., Achkar J.P., Brant S.R., Bayless T.M., Kirschner B.S., Hanauer S.B., Nunez G., Cho J.H. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature, 2001, vol. 411, no. 6837, pp. 603–606. doi: 10.1038/35079114.
13. Månsson Kvarnhammar A., Tengroth L., Adner M., Cardell L.O. Innate immune receptors in human airway smooth muscle cells: activation by TLR1/2, TLR3, TLR4, TLR7 and NOD1 agonists. PLoS ONE, 2013, vol. 8, no. 7, art. e68701, pp. 1–10. doi: 10.1371/journal.pone.0068701.
14. Martinon F., Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol., 2005, vol. 26, no. 8, pp. 447–454. doi: 10.1016/j.it.2005.06.004.
15. Seth R.B., Sun L., Chen Z.J. Antiviral innate immunity pathways. Cell Res., 2006, vol. 16, no. 2, pp. 141–147. doi: 10.1038/sj.cr.7310019.
16. O'Neill L.A.J. Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr. Opin. Pharmacol., 2003, vol. 3, no. 4, pp. 396–403. doi: 10.1016/s1471-4892(03)00080-8.
17. Heymann M.C., Rabe S., Russ S., Kapplusch F., Schulze F., Stein R., Winkler S., Hedrich C.M., Rosen-Wolff A., Hofmann S.R. Fluorescent tags influence the enzymatic activity and subcellular localization of procaspase-1. Clin. Immunol., 2015, vol. 160, no. 2, pp. 172–179. doi: 10.1016/j.clim.2015.05.011.
18. Luksch H., Winkler S., Heymann M.C., Schulze F., Hofmann S.R., Roesler J., Rosen-Wolff A. Current knowledge on procaspase-1 variants with reduced or abrogated enzymatic activity in autoinflammatory disease. Curr. Rheumatol. Rep., 2015, vol. 17, no. 7, art. 45, pp. 1–7. doi: 10.1007/s11926-015-0520-5.
19. Winkler S., Rosen-Wolff A. Caspase-1: An integral regulator of innate immunity. Semin. Immunopathol., 2015, vol. 37, no. 4, pp. 419–427. doi: 10.1007/s00281-015-0494-4.
20. Martinon F., Burns K., Tschopp J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell, 2002, vol. 10, no. 2, pp. 417–426. doi: 10.1016/s1097-2765(02)00599-3.
21. Zou H., Li Y., Liu X., Wang X. An APAF-1?cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem., 1999, vol. 274, no. 17, pp. 11549–11556. doi: 10.1074/jbc.274.17.11549.
22. Qi H., Jiang Y., Yin Z., Jiang K., Li L., Shuai J. Optimal pathways for the assembly of the Apaf-1?cytochrome c complex into apoptosome. Phys. Chem. Chem. Phys., 2018, vol. 20, no. 3, pp. 1964–1973. doi: 10.1039/c7cp06726g.
23. Wu Ch.-Ch., Lee S., Malladi S., Chen M.D., Mastrandrea N.J., Zhang Z., Bratton S.B. The Apaf-1 apoptosome induces formation of caspase-9 homo- and heterodimers with distinct activities. Nat. Commun., 2016, vol. 7, art. 13565, pp. 1–14. doi: 10.1038/ncomms13565.
24. Faustin B., Lartigue L., Bruey J.M., Luciano F., Sergienko E., Bailly-Maitre B., Volkmann N., Hanein D., Rouiller I., Reed J.C. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell, 2007, vol. 25, no. 5, pp. 713–724. doi: 10.1016/j.molcel.2007.01.032.
25. Shenoy A.R., Wellington D.A., Kumar P., Kassa H., Booth C.J., Cresswell P., MacMicking J.D. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science, 2012, vol. 336, no. 6080, pp. 481–485. doi: 10.1126/science.1217141.
26. Elinav E., Strowig T., Kau A.L., Henao-Mejia J., Thaiss C.A., Booth C.J., Peaper D.R., Bertin J., Eisenbarth S.C., Gordon J.I., Flavell R.A. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 2011, vol. 145, no. 5, pp. 745–757. doi: 10.1016/j.cell.2011.04.022.
27. Ting J.P., Lovering R.C., Alnemri E.S., Bertin J., Boss J.M., Davis B.K., Flavell R.A., Girardin S.E., Godzik A., Harton J.A., Hoffman H.M., Hugot J.P., Inohara N., Mackenzie A., Maltais L.J., Nunez G., Ogura Y., Otten L.A., Philpott D., Reed J.C., Reith W., Schreiber S., Steimle V., Ward P.A. The NLR gene family: A standard nomenclature. Immunity, 2008, vol. 28, no. 3, pp. 285–287. doi: 10.1016/j.immuni.2008.02.005.
28. Schattgen S.A., Fitzgerald K.A. The PYHIN protein family as mediators of host defenses. Immunol. Rev., 2011, vol. 243, no. 1, pp. 109–118. doi: 10.1111/j.1600-065X.2011.01053.x.
29. Ireton R.C., Gale M. Jr. RIG-I like receptors in antiviral immunity and therapeutic applications. Viruses, 2011, vol. 3, no. 6, pp. 906–919. doi: 10.3390/v3060906.
30. Schroder K., Tschopp J. The inflammasomes. Cell, 2010, vol. 140, no. 6, pp. 821–832. doi: 10.1016/j.cell.2010.01.040.
31. Xu H., Yang J., Gao W., Li L., Li P., Zhang L., Gong Y.N., Peng X., Xi J.J., Chen S., Wang F., Shao F. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature, 2014, vol. 513, no. 7517, pp. 237–241. doi: 10.1038/nature13449.
32. Thornberry N.A., Bull H.G., Calaycay J.R., Chapman K.T., Howard A.D., Kostura M.J., Miller D.K., Molineaux S.M., Weidner J.R., Aunins J., Elliston K.O., Ayala J.M., Casano F.J., Chin J., Ding G.J.-F., Egger L.A., Gaffney E.P., Limjuco G., Palyha O.C., Raju S.M., Rolando A.M., Salley J.P., Yamin T.-T., Lee T.D., Shively J.E., MacCross M., Mumford R.A., Schmidt J.A., Tocci M.J. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature, 1992, vol. 356, no. 6372, pp. 768–774. doi: 10.1038/356768a0.
33. Gu Y., Kuida K., Tsutsui H., Ku G., Hsiao K., Fleming M.A., Hayashi N., Higashino K., Okamura H., Nakanishi K., Kurimoto M., Tanimoto T., Flavell R.A., Sato V., Harding M.W., Livingston D.J., Su M.S. Activation of interferon-gamma inducing factor mediated by interleukin-1β converting enzyme. Science, 1997, vol. 275, no. 5297, pp. 206–209. doi: 10.1126/science.275.5297.206.
34. Ghayur T., Banerjee S., Hugunin M., Butler D., Herzog L., Carter A., Quintal L., Sekut L., Talanian R., Paskind M., Wong W., Kamen R., Tracey D., Allen H. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature, 1997, vol. 386, no. 6625, pp. 619–623. doi: 10.1038/386619a0.
35. Fink S.L., Cookson B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun., 2005, vol. 73, no. 4, pp. 1907–1916. doi: 10.1128/IAI.73.4.1907-1916.2005.
36. Kayagaki N., Stowe I.B., Lee B.L., O'Rourke K., Anderson K., Warming S., Cuellar T., Haley B., Roose-Girma M., Phung Q.T., Liu P.S., Lill J.R., Li H., Wu J., Kummerfeld S., Zhang J., Lee W.P., Snipas S.J., Salvesen G.S., Morris L.X., Fitzgerald L., Zhang Y., Bertram E.M., Goodnow C.C., Dixit V.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, vol. 526, no. 7575, pp. 666–671. doi: 10.1038/nature15541.
37. Vezzani A., Maroso M., Balosso S., Sanchez M.A., Bartfai T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain, Behav., Immun., 2011, vol. 25, no. 7, pp. 1281–1289. doi: 10.1016/j.bbi.2011.03.018.
38. Bertin J., Nir W.J., Fischer C.M., Tayber O.V., Errada P.R., Grant J.R., Keilty J.J., Gosselin M.L., Robison K.E., Wong G.H., Glucksmann M.A., DiStefano P.S. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J. Biol. Chem., 1999, vol. 274, no. 19, pp. 12955–12958. doi: 10.1074/jbc.274.19.12955.
39. Inohara N., Koseki T., del Peso L., Hu Y., Yee C., Chen S., Carrio R., Merino J., Liu D., Ni J., Nunez G. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem., 1999, vol. 274, no. 21, pp. 14560–14567. doi: 10.1074/jbc.274.21.14560.
40. Man S.M., Kanneganti T.D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol., 2016, vol. 16, no. 1, pp. 7–21. doi: 10.1038/nri.2015.7.
41. Sharma D., Kanneganti T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol., 2016, vol. 213, no. 6, pp. 617–629. doi: 10.1083/jcb.201602089.
42. Vigano E., Diamond C.E., Spreafico R., Balachander A., Sobota R.M., Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun., 2015, vol. 6, art. 8761, pp. 1–13. doi: 10.1038/ncomms9761.
43. Wang S., Miura M., Jung Y.K., Zhu H., Li E., Yuan J. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell, 1998, vol. 92, no. 4, pp. 501–509. doi: 10.1016/S0092-8674(00)80943-5.
44. Broz P., Dixit V.M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol., 2016, vol. 16, no. 7, pp. 407–420. doi: 10.1038/nri.2016.58.
45. Chavarria-Smith J., Vance R.E. The NLRP1 inflammasomes. Immunol. Rev., 2015, vol. 265, no. 1, pp. 22–34. doi: 10.1111/imr.12283.
46. Rathinam V.A., Fitzgerald K.A. Inflammasome complexes: Emerging mechanisms and effector functions. Cell, 2016, vol. 165, no. 4, pp. 792–800. doi: 10.1016/j.cell.2016.03.046.
47. Boyden E.D., Dietrich W.F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet., 2006, vol. 38, no. 2, pp. 240–244. doi: 10.1038/ng1724.
48. D'Osualdo A., Weichenberger C.X., Wagner R.N., Godzik A., Wooley J., Reed J.C. CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLoS ONE, 2011, vol. 6, no. 11, art. e27396, pp. 1–8. doi: 10.1371/journal.pone.0027396.
49. Frew B.C., Joag V.R., Mogridge J. Proteolytic processing of Nlrp1b is required for inflammasome activity. PLoS Pathog., 2012, vol. 8, no. 4, art. e1002659, pp. 1–11. doi: 10.1371/journal.ppat.1002659.
50. Chavarria-Smith J., Vance R.E. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog., 2013, vol. 9, no. 6, art. e1003452, pp. 1–10. doi: 10.1371/journal.ppat.1003452.
51. Hellmich K.A., Levinsohn J.L., Fattah R., Newman Z.L., Maier N., Sastalla I., Liu S., Leppla S.H., Moayeri M. Anthrax lethal factor cleaves mouse nlrp1b in both toxin-sensitive and toxin-resistant macrophages. PLoS ONE, 2012, vol. 7, no. 11, art. e49741, pp. 1–5. doi: 10.1371/journal.pone.0049741.
52. Levinsohn J.L., Newman Z.L., Hellmich K.A., Fattah R., Getz M.A., Liu S., Sastalla I., Leppla S.H., Moayeri M. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog., 2012, vol. 8, no. 3, art. e1002638, pp. 1–7. doi: 10.1371/journal.ppat.1002638.
53. Sandstrom A., Mitchell P.S., Goers L., Mu E.W., Lesser C.F., Vance R.E. Functional degradation: A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science, 2019, vol. 364, no. 6435, art. eaau1330, pp. 1–11. doi: 10.1126/science.aau1330.
54. Bauernfeind F.G., Horvath G., Stutz A., Alnemri E.S., MacDonald K., Speert D., Fernandes-Alnemri T., Wu J., Monks B.G., Fitzgerald K.A., Hornung V., Latz E. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, vol. 183, no. 2, pp. 787–791. doi: 10.4049/jimmunol.0901363.
55. Shaw P.J., McDermott M.F., Kanneganti T.D. Inflammasomes and autoimmunity. Trends Mol. Med., 2011, vol. 17, no. 2, pp. 57–64. doi: 10.1016/j.molmed.2010.11.001.
56. Martinon F., Petrilli V., Mayor A., Tardivel A., Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, vol. 440, no. 7081, pp. 237–241. doi: 10.1038/nature04516.
57. Duewell P., Kono H., Rayner K.J., Sirois C.M., Vladimer G., Bauernfeind F.G., Abela G.S., Franchi L., Nunez G., Schnurr M., Espevik T., Lien E., Fitzgerald K.A., Rock K.L., Moore K.J., Wright S.D., Hornung V., Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, vol. 464, no. 7293, pp. 1357–1361. doi: 10.1038/nature08938.
58. Broderick L., De Nardo D., Franklin B.S., Hoffman H.M., Latz E. The inflammasomes and autoinflammatory syndromes. Annu. Rev. Pathol., 2015, vol. 10, pp. 395–424. doi: 10.1146/annurev-pathol-012414-040431.
59. Jha S., Srivastava S.Y., Brickey W.J., Iocca H., Toews A., Morrison J.P., Chen V.S., Gris D., Matsushima G.K., Ting J.P. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J. Neurosci., 2010, vol. 30, no. 47, pp. 15811–15820. doi: 10.1523/JNEUROSCI.4088-10.2010.
60. Masters S.L., Dunne A., Subramanian S.L., Hull R.L., Tannahill G.M., Sharp F.A., Becker C., Franchi L., Yoshihara E., Chen Z., Mullooly N., Mielke L.A., Harris J., Coll R.C., Mills K.H., Mok K.H., Newsholme P., Nunez G., Yodoi J., Kahn S.E., Lavelle E.C., O'Neill L.A. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol., 2010, vol. 11, no. 10, pp. 897–904. doi: 10.1038/ni.1935.
61. Wen H., Gris D., Lei Y., Jha S., Zhang L., Huang M.T., Brickey W.J. Ting J.P. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol., 2011, vol. 12, no. 5, pp. 408–415. doi: 10.1038/ni.2022.
62. Heneka M.T., Kummer M.P., Stutz A., Delekate A., Schwartz S., Vieira-Saecker A., Griep A., Axt D., Remus A., Tzeng T.C., Gelpi E., Halle A., Korte M., Latz E., Golenbock D.T. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature, 2013, vol. 493, no. 7434, pp. 674–678. doi: 10.1038/nature11729.
63. Lamkanfi M., Dixit V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 2012, vol. 28, pp. 137–161. doi: 10.1146/annurev-cellbio-101011-155745.
64. Halle A., Hornung V., Petzold G.C., Stewart C.R., Monks B.G., Reinheckel T., Fitzgerald K.A., Latz E., Moore K.J., Golenbock D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, vol. 9, no. 8, pp. 857–865. doi: 10.1038/ni.1636.
65. Inouye B.M., Hughes F.M. Jr., Sexton S.J., Purves J.T. The emerging role of inflammasomes as central mediators in inflammatory bladder pathology. Curr. Urol., 2018, vol. 11, no. 2, pp. 57–72. doi: 10.1159/000447196.
For other references see (total number of references: 142)
The content is available under the license Creative Commons Attribution 4.0 License.