N.V. Danilova a*, P.A. Kuryntseva a**, M.Sh. Tagirov b***, P.Yu. Galitskaya a****, S.Yu. Selivanovskaya a*****
aKazan Federal University, Kazan, 420008 Russia
bTatar Scientific Research Institute of Agriculture, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420059 Russia
E-mail: *natasha-danilova91@mail.ru, **polinazwerewa@yandex.ru,
***tatniva@mail.ru, ****gpolina33@yandex.ru, *****svetlana.selivanovskaya@kpfu.ru
Received March 29, 2019
DOI: 10.26907/2542-064X.2019.3.395-407
For citation: Danilova N.V., Kuryntseva P.A., Tagirov M.Sh., Galitskaya P.Yu., Selivanovskaya S.Yu. Spreading of antibiotic resistance as a result of soil fertilization by manure composts containing oxytetracycline and antibiotic-resistant genes. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 3, pp. 395–407. doi: 10.26907/2542-064X.2019.3.395-407. (In Russian)
Abstract
Due to the active usage of antibacterial drugs in animal husbandry, antibiotic residues and antibiotic-resistance genes enter the soil when it is fertilized with manure and compost. In this work, we estimated the spread of antibiotic-resistance genes in the soil when it was fertilized with composts containing oxytetracycline (OTC) and tetracycline-resistance genes. The following mixtures were studied for 35 days: the soil with “clean” compost, the soil with compost and 300 mg kg–1 OTC, the soil with compost and antibiotic-resistance genes. In the soil treated with composts, the number of bacteria and fungi increased, with the greatest changes in the number of bacteria observed for the soil with compost containing OTC. The addition of compost with the antibiotic and the resistance genes tet(M) and tet(X) to the soil led to the formation of antibiotic resistance in soil microorganisms with the highest number of gene copies for 5–7 days: an average of 3.31?106 and 7.77?106 copies g-1, respectively. Both genes, tet(M) and tet(X), but in smaller numbers, were detected in the soil with “clean” compost on days 14–21, respectively.
Keywords: antibiotics, oxytetracycline, antibiotic resistance, antibiotic-resistance genes, compost, real-time PCR
Acknowledgments. The study was supported by the Russian Science Foundation (project no. 18-29-25054).
References
1. Bouki C., Venieri D., Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants : A review. Ecotoxicol. Environ. Saf., 2013, vol. 91, no. 5, pp. 1–9. doi: 10.1016/j.ecoenv.2013.01.016.
2. Naquin A., Shrestha A., Sherpa M., Nathaniel R., Boopathy R. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA. Bioresour. Technol., 2015, vol. 188, pp. 79–83. doi: 10.1016/j.biortech.2015.01.052.
3. Sarmah A.K., Meyer M.T., Boxall A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 2006, vol. 65, no. 5, pp. 725–759. doi: 10.1016/j.chemosphere.2006.03.026.
4. Thiele-Bruhn S., Beck I.C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 2005, vol. 59, no. 4, pp. 457–465. doi: 10.1016/j.chemosphere.2005.01.023.
5. Fang H., Han Y., Yin Y., Pan X., Yu Y. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil. Chemosphere, 2014, vol. 96, pp. 51–56. doi: 10.1016/j.chemosphere.2013.07.016.
6. Halling-Sшrensen B., Nors Nielsen S., Lanzky P.F., Ingerslev F., Holten Lьtzhшft H.C., Jшrgensen S.E. Occurrence, fate and effects of pharmaceuticals substance in the environment – A review. Chemosphere, 1998, vol. 36, no. 2, pp. 357–393. doi: 10.1016/s0045-6535(97)00354-8.
7. Hammesfahr U., Heuer H., Manzke B., Smalla K., Thiele-Bruhn S. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol. Biochem., 2008, vol. 40, no. 7, pp. 1583–1591. doi: 10.1016/j.soilbio.2008.01.010.
8. Reichel R., Rosendahl I., Peeters E.T.H.M., Focks A., Groeneweg J., Bierl R., Schlichting A., Amelung W., Thiele-Bruhn S. Effects of slurry from sulfadiazine-(SDZ) and difloxacin-(DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil. Soil Biol. Biochem., 2013, vol. 62, pp. 82–91. doi: 10.1016/j.soilbio.2013.03.007.
9. Zhang T., Zhang M., Zhang X., Fang H.H. Tetracycline resistance genes and tetracycline resistant lactose-fermenting enterobacteriaceae in activated sludge of sewage treatment plants. Environ. Sci. Technol., 2009, vol. 43, no. 10, pp. 3455–3460. doi: 10.1021/es803309m.
10. Wu X., Wei Y., Zheng J., Zhao X., Zhong W. The behavior of tetracyclines and their degradation products during swine manure composting. Bioresour. Technol., 2011, vol. 102, no. 10, pp. 5924–5931. doi: 10.1016/j.biortech.2011.03.007.
11. Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic., 2008, vol. 8, no. 1, pp. 1–13. doi: 10.1016/j.ecolind.2007.06.002.
12. Dolliver H., Noll S.L. Antibiotic degradation during manure composting. J. Environ. Qual., 2008, vol. 37, no. 3, pp. 1245–1253. doi: 10.2134/jeq2007.0399.
13. Ramaswamy J., Prasher S.O., Patel R.M., Hussain S.A., Barrington S.F. The effect of composting on the degradation of a veterinary pharmaceutical. Bioresour. Technol., 2010, vol. 101, no. 7, pp. 2294–2299. doi: 10.1016/j.biortech.2009.10.089.
14. Arikan O.A., Sikora L.J., Mulbry W., Khan S.U., Foster G.D. Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresour. Technol., 2007, vol. 98, no. 1, pp. 169–176. doi: 10.1016/j.biortech.2005.10.041.
15. Kim K., Owens G., Ok Y.S., Park W.K., Lee D.B., Kwon S.I. Decline in extractable antibiotics in manure-based composts during composting. Waste Manage., 2012, vol. 32, no. 1, pp. 110–116. doi: 10.1016/j.wasman.2011.07.026.
16. Li B., Zhang T., Xu Z., Fang H.H. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2009, vol. 645, nos. 1–2, pp. 64–72. doi: 10.1016/j.aca.2009.04.042.
17. ISO 17601:2016 Soil quality — Estimation of abundance of selected microbial gene sequences by quantitative PCR from DNA directly extracted from soil, 2016, pp. 1–31.
18. Zhang W., Huang M., Qi F., Sun P., Van Ginkel S. Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors. Bioresour. Technol., 2013, vol. 150, no. 1, pp. 9–14. doi: 10.1016/j.biortech.2013.09.081.
19. Arslan E.I., Obek E., Kirbag S. Determination of the effect of compost on soil microorganisms. Int. J. Sci. Technol., 2008, vol. 3, no. 2, pp. 151–159.
20. Kim K.D., Nemec S., Musson G. Effects of composts and soil amendments on soil microflora and Phytophthora root and crown rot of bell pepper. Crop Prot., 1997, vol. 16, no. 2, pp. 165–172. doi: 10.1016/S0261-2194(96)00074-9.
21. Zhen Z., Liu H., Wang N., Guo L., Meng J., Ding N., Wu G., Jiang G. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One, 2014, vol. 9, no. 10, art. e108555, pp. 1–12. doi: 10.1371/journal.pone.0108555.
22. Danon M., Franke-Whittle I.H., Insam H., Chen Y., Hadar Y. Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol. Ecol., 2008, vol. 65, no. 1, pp. 133–144. doi: 10.1111/j.1574-6941.2008.00506.x.
23. Xu S., Amarakoon I.D., Zaheer R., Smith A., Sura S., Wang G., Reuter T., Zvomuya F., Cessna A.J., Larney F.J., McAllister T.A. Dissipation of antimicrobial resistance genes in compost originating from cattle manure after direct oral administration or post-excretion fortification of antimicrobials. J. Environ. Sci. Health, 2018, vol. 53, no. 4, pp. 373–384. doi: 10.1080/10934529.2017.1404337.
24. Cheng W., Li J., Wu Y., Xu L., Su C., Qian Y., Zhu Y.G, Chen H. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. J. Hazard. Mater., 2016, vol. 304, pp. 18–25. doi: 10.1016/j.jhazmat.2015.10.037.
25. Venglovsky J., Sasakova N., Placha I. Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application. Bioresour. Technol., 2009, vol. 100, no. 22, pp. 5386–5391. doi: 10.1016/j.biortech.2009.03.068.
26. Wang F.H., Qiao M., Chen Z., Su J.Q., Zhu Y.G. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J. Hazard. Mater., 2015, vol. 299, no. 3, pp. 215–221. doi: 10.1016/j.jhazmat.2015.05.028.
27. Xie W.-Y., Shen Q., Zhao F.J. Antibiotics and antibiotic resistance from animal manures to soil: A review. Eur. J. Soil Sci., 2017, vol. 69, no. 1, pp. 181–195. doi: 10.1111/ejss.12494.
28. Chen W., Liu W.L., Pan N., Jiao W., Wang M. Oxytetracycline on functions and structure of soil microbial community. J. Soil Sci. Plant Nutr., 2013, vol. 13, no. 4, pp. 967–975. doi: 10.4067/S0718-95162013005000076.
29. Qian X. Sun W., Gu J., Wang X.J., Sun J.J., Yin Y.N., Duan M.L. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure. J. Hazard. Mater., 2016, vol. 315, pp. 61–69. doi: 10.1016/j.jhazmat.2016.05.002.
The content is available under the license Creative Commons Attribution 4.0 License.