E.A. Burilovaa*, T.V. Nikitinaa**, L.I. Vagapovab***, Z.A. Nasirovaa****, A.N. Solodova*****, J.R. Shaiymovaa******, R.R. Amirova*******
aKazan Federal University, Kazan, 420008 Russia
bA.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088 Russia
E-mail: *burilovajen07@mail.ru, **vlalinik2012@yandex.ru, ***vagapoval@iopc.ru, ****nasirovaz89@mail.ru, *****sanya.solodoff@yandex.ru, ******julia_shayimova@mail.ru, *******ramirov@kpfu.ru
Received April 2, 2018
Full text PDF
Abstract
The constants of protolytic equilibria for hydroxyethylidene diphosphonic acid (HEDP), aminomethylated calix[4]resorcinol (AMC), and the composition based on them (AMC-HEDP) in a solution of nonionic surfactant-polyoxyethylated dodecanol Brij-35 have been determined by pH-metric titration with subsequent mathematical processing of the data. In addition to monomeric forms, the existence of several dimeric forms of different extent of protonation has been also found in the solutions of AMC and HEDP. For the composition based on AMC-HEDP in the pH range from acid to neutral, the formation of mixed forms of the following composition has been established: H16YL40, H15YL41–, H14YL42–, H13YL43–, H12YL44–, H7YL2–, H6YL22–.
Keywords: protolytic properties, aminomethylated calix[4]resorcinol, hydroxyethylidene diphosphonic acid, AMC-HEDP composition, pH-metric titration
Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 18-33-00441mol_a).
Figure Captions
Fig. 1. Curve of hydroxyethylidene diphosphonic acid titration in Brij-35 aqueous solution. СHEDP 1.09 mM, СBrij-35 10 mM.
Fig. 2. Dependence of distribution of HEDP ionized forms on pH in Brij-35 aqueous solution: 1 – H3L–, 2 – H2L2–, 3 – HL3–, 4 – (НL)26–, 5 – НL27–, 6 – L4–.
Fig. 3. Titration curve of aminomethylated calix[4]resorcinol in Brij-35 aqueous solution. СAMC 1 mM, СBrij-35 10 mM.
Fig. 4. Dependence of distribution of AMC ionized forms on pH in Brij-35 aqueous solution: 1 – HY+, 2 – HY2+, 3 – H2Y2+, 4 – H3Y3+, 5 – H4Y4+, 6 –Y0.
Fig. 5. Titration curve (a) and dependence of formation function (n) on pH in AMC-HEDP composition in Brij-35 solution. СAMC-HEDP 0.25 mM, СBrij-35 10 mM.
Fig. 6. Dependence of distribution of ionized mono- and dimeric (a) and mixed (b) forms of AMC-HEDP on pH in Brij-35 aqueous solution: 3 – H2Y2+, 4 – HY+, 5 – НY2+, 6 – Y0, 9 – H2L2–, 10 – НL3–, 11 – (НL)26–, 12 – НL27–; 14 – H16YL40, 15 – H15YL4–, 16 – H14YL42–, 17 – H13YL43–, 18 – H12YL44–, 19 – H7YL2–, 20 – H6YL22–.
References
- Jain V.K., Kanaiya P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev., 2011, vol. 80, no. 1, pp. 75–102. doi: 10.1070/RC2011v080n01ABEH004127.
- Amirov R.R., Mustafina A.R., Nugaeva Z.T., Fedorenko S.V., Morozov V.I., Kazakovа E.Kh., Habicher W.D., Konovalov A.I. Aggregation and counter ion binding ability of sulfonatomethylated calix[4]resorcinarenes in aqueous solutions. Colloids Surf., A, 2004, vol. 240, nos. 1–3, pp. 35–43. doi: 10.1016/j.colsurfa.2004.03.013.
- Kazakova E.K., Morozova J.E., Prosvirkin A.V., Pich A.Z., Gubanov E.P., Muslinkin A.A., Habicher W.D., Konovalov A.I. Self-assembly of octaaminoamido derivatives of resorcin[4]arene in water – A ''cell-like'' submicron-scale hydrogel structure. Eur. J. Org. Chem., 2004, vol. 2004, no. 15, pp. 3323–3329. doi: 10.1002/ejoc.200400124.
- Len Zh.M. Supramolekulyarnaya khimiya. Kontseptsii i perspektivy [Supramolecular Chemistry. Concepts and Perspectives]. Novosibirsk, Nauka, 1998. 334 p. (In Russian)
- Arena G., Contino A., Fujimoto T., Sciotto D., Aoyama Y. 1H NMR and calorimetric studies of the inclusion of trimethylammonium cations into water soluble calixresorcinarenes. Supramol. Chem., 2000, vol. 11, no. 4, pp. 279–288. doi: 10.1080/10610270008049139.
- Morozova Ju.E., Syakaev V.V., Ermakova A.M., Shalaeva Ya.V, Kazakova E.Kh., Konovalov A.I. Supramolecular systems based on amidoammonium and amidoaminocalix[4]resorcinarenes and polyacrylic acid. Colloids Surf., A, 2015, vol. 481, pp. 400–406. doi: 10.1016/j.colsurfa.2015.06.002.
- Mokhtari B., Pourabdollah K., Dalali N. Molecule and ion recognition of nano-baskets of calixarenes since 2005. J. Coord. Chem., 2011, vol. 64, no. 5, pp. 743–794. doi: 10.1080/00958972.2011.555538.
- Jang Y.M., Yu C.J., Kim J.S., Kim S.U. Ab initio design of drug carriers for zoledronate guest molecule using phosphonated and sulfonated calix[4]arene and calix[4]resorcinarene host molecules. J. Mater. Sci., 2018, vol. 53, no. 7, pp. 5125–5139. doi: 10.1007/s10853-017-1930-8.
- Cram D.J., Cram J.M. Container Molecules and Their Guests. Cambridge, R. Soc. Chem., 1994. 223 p.
- Fendler J.Н., Fendler E.J. Catalysis in Micellar and Macromolecular Systems. New York, Acad. Press, 1975. 560 p.
- Sorrell T.N., Pigge F.C., White P.S. Calixresorcinarenes as ligands: Synthesis and characterization of transition-metal cavitand complexes. Inorg. Chem., 1994, vol. 33, no. 4, pp. 632–635. doi: 10.1021/ic00082a005.
- Kazakova E.Kh., Morozova Ju.E, Mironova D.A., Syakaev V.V., Muslinkina L.A., Konovalov A.I. Influence of amidoammonium calix[4]resorcinarenes on methyl orange protolytic equilibrium: Supramolecular indicator systems. Supramol. Chem., 2013, vol. 25, no. 12, pp. 831–841. doi: 10.1080/10610278.2013.809085.
- Mokhtari B., Pourabdollah K. Applications of calixarene nano-baskets in pharmacology. J. Inclusion Phenom. Macrocyclic Chem., 2012, vol. 73, nos. 1–4, pp. 1–15. doi: 10.1007/s10847-011-0062-z.
- Mokhtari B., Pourabdollah K. Applications of nano-baskets in drug development: High solubility and low toxicity. Drug Chem. Toxicol., 2013, vol. 36, no. 1, pp. 119–132. doi: 10.3109/01480545.2011.653490.
- Amirov R.R. Soedineniya metallov kak magneto-relaksatsionnye zondy dlya vysokoorganizovannykh sred. Primenenie v MR-tomografii i khimii rastvorov [Metal Compounds as Magnetic Relaxation Probes for Highly Organized Media. Application in Magnetic Resonance Tomography and Solution Chemistry]. Kazan, Nov. Znanie, 2005. 316 p. (In Russian)
- Schühle D.T., van Rijn P., Laurent S., Vander E.L., Muller R.N., Stuart M.C., Schatz J., Peters J.A. Liposomes with conjugates of a calix[4]arene and a Gd-DOTA derivative on the outside surface; an efficient potential contrast agent for MRI. Chem. Commun., 2010, vol. 46, pp. 4399–4401. doi: 10.1039/C0CC00107D.
- Pod''yachev S.N., Mustafina A.R., Ivanova E.G., Burilov A.R., Konovalov A.I. The effect of alkene substitutions on the acid-base properties of calix[4]resorcinarenes and their dialkylaminomethyl derivatives. Zh. Obshch. Khim., 2000, vol. 70, no. 10, pp. 1690–1695. (In Russian)
- Ryzhkina I.S., Kudryavtseva L.A., Mustafina A.R., Morozova Yu.E., Kazakova E.Kh., Enikeev K.M., Konovalov A.I. Protolytic properties and reactivity of aminomethylated calix[4]resorcarenes in reactions with esters of phosphorus acids. Russ. Chem. Bull., vol. 48, no. 3, pp. 453–458. doi: 10.1007/BF02496160.
- Morozova Yu.E., Kuznetzova L.S., Mustafina A.R., Kazakova E.Kh., Morozov V.I., Ziganshina A.U., Konovalov A.I. Aminoalkylated calix[4]resorcinarenes as pH-sensitive “hosts” for the charged metallocomplexes. J. Inclusion Phenom. Macrocyclic Chem., 1999, vol. 35, nos. 1–2, pp. 397–407. doi: 10.1023/A:1008188108253.
- Morozova Yu.E., Kazakova E.Kh., Mustafina A.R., Konovalov A.I. Dialkylaminomethylated calix[4]resorcinarenes. Reaction with carboxylic acids. Russ. J. Gen. Chem., 2001, vol. 71, no. 10, pp. 1581–1583. doi: 10.1023/A:1013955104433.
- Dyatlova N.M., Temkina V.Ya., Popov K.I. Kompleksony i kompleksonaty metallov [Complexones and Metal Complexonates]. Moscow, Khimiya, 1988. 544 p. (In Russian)
- Vagapova L.I., Nasirova Z.A., Burilova E.A., Zobov V.V., Burilov A.R., Amirov R.R. New salt structures based on aminomethylated calix[4]-resorcinarenes and (1-hydroxyethane-1,1-diyl)bisphosphonic acid. Russ. J. Org. Chem., 2017, vol. 53, no. 2, pp. 312–314. doi: 10.1134/S1070428017020324.
- Mustafina A.R., Amirov R.R., Elistratova Yu.G., Skripacheva V.V., Nugaeva Z.T., Kazakova E.Kh. Solubility, acid–base and complexation properties of calix[4]resorcinarene in aqueous solutions of nonionic surfactants. Colloid J., 2002, vol. 64, no. 6, pp. 734–739. doi: 10.1023/A:1021554323367.
- Sal'nikov Yu.I., Glebov A.N., Devyatov F.V. Poliyadernye kompleksy v rastvorakh [Polynuclear Complexes in Solutions]. Kazan, Izd. Kazan. Univ., 1989. 288 p. (In Russian)
- Kabanchik M.I., Lastovskii R.P., Medved' T.Ya., Medyntsev V.V., Kolpakova I.D., Dyatlova N.M. On complexing properties of oxyethylidene-diphosphonic acids in aqueous solutions. Dokl. Akad. Nauk SSSR, 1967, vol. 177, no. 3, pp. 582–585. (In Russian)
- Carrol R.L., Irani R.R. On the acidity of substituted methylenediphosphonates and their interactions with alkali metal ions. Inorg. Chem., 1967, vol. 6, no. 11, pp. 1994–1998.
- Kireeva A.Yu., Zhadanov B.V., Bikhman B.I., Dyatlova N.M. Study of acidic dissociation of oxyethylidenediphosphonic acid. Khim. Reakt. Prep. (IERA), 1972, no. 34, pp. 12–16. (In Russian)
- Vasil'ev V.P., Orlova T.D., Kochergina L.A., Mar'ina T.B., Bikhman B.I. Thermal effects of I-oxyethylidenediphosphonic acid dissociation in first and second stages. Zh. Obshch. Khim., 1983, vol. 53, no. 2, pp. 305–309. (In Russian)
- Vasil'ev V.P., Kozlovskii E.V., Orlova T.D., Mar'ina T.B. Calorimetric study of oxyethylidenediphosphonic acid dissociation in alkaline region. Zh. Obshch. Khim., 1983, vol. 53, no. 7, pp. 1544–1549. (In Russian)
- Musin D.R., Rubanov A.V., Devyatov F.V. Acid-base properties of the aqueous 1-hydro-xyethylidenediphosphonic acid (HEDPA). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2011, vol. 153, no. 3, pp. 40–47. (In Russian)
For citation: Burilova E.A., Nikitina T.V., Vagapova L.I., Nasirova Z.A., Solodov A.N., Shaiymova J.R., Amirov R.R. Protolytic properties of aminomethylated calix[4]resorcinol, hydroxyethylidene diphosphonic acid and their composition in aqueous micellar solutions. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 2, pp. 185–199. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.