G.F. Sitdikova a, A. Hermann b, A.V. Yakovlev a
a Kazan Federal University, Kazan, 420008 Russia
b University of Salzburg, Salzburg, A-5020 Austria
Received June 3, 2018
Full text PDF
Abstract
Homocysteine is a sulfhydryl-containing amino acid derived from methionine. The cellular concentration of homocysteine is regulated by two key pathways: remethylation back to methionine or transsulfuration to cysteine with simultaneous production of hydrogen sulfide (H2S). Homocysteine levels increase in different conditions, including genetic factors, diet, life style or miscellaneous medication. Elevated levels of the homocysteine, called hyperhomocysteinemia (hHcy), are associated with a higher risk of neurovascular diseases, dementia, developmental impairments or epilepsy. Oxidative stress is one of the common mechanisms of homocysteine-induced disorders. H2S as an established gasotransmitter implicated in the regulation of numerous physiological functions is also well-known for its neuroprotective potential. The recent data indicate that the level of H2S decreases in hHcy conditions, which may mediate homocysteine-induced neurotoxicity. This review summarizes the available data on homocysteine and H2S metabolism and mechanisms of H2S mediating neuroprotection and can be helpful in searching for ways to prevent homocysteine-induced neurotoxicity.
Keywords: homocysteine, hyperhomocysteinemia, cystathionine beta synthase, hydrogen sulfide, oxidative stress, glutamate receptors, Ca2+-activated K+-channels, neurodegeneration, cognitive dysfunctions
Acknowledgements. This study was supported by the Russian Foundation for Basic Research (projects no. 18-015-00423 and 18-315-00256).
References
- Ansari R., Mahta A., Mallack E., Luo J.J. Hyperhomocysteinemia and neurologic disorders: A review. J. Clin. Neurol., 2014, vol. 10, no. 4, pp. 281–288. doi: 10.3988/jcn.2014.10.4.281.
- Petras M., Tatarkova Z., Kovalska M., Mokra D., Dobrota D., Lehotsky J., Drgova A. Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J. Physiol. Pharmacol., 2014, vol. 65, no. 1, pp. 15–23.
- Agrawal A., Ilango K., Singh P.K., Karmakar D., Singh G.P., Kumari R., Dubey G.P. Age dependent levels of plasma homocysteine and cognitive performance. Behav. Brain Res., 2015, vol. 15, no. 283, pp. 139–144. doi: 10.1016/j.bbr.2015.01.016.
- Christie L.A., Riedel G., Platt B. Bi-directional alterations of LTP after acute homocysteine exposure. Behav. Brain Res., 2009, vol. 205, no. 2, pp. 559–563. doi: 10.1016/j.bbr.2009.07.010.
- Wang R. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol. Rev., 2012, vol. 92, no. 2, pp. 791–896. doi: 10.1152/physrev.00017.2011.
- Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, vol. 16, no. 3, pp. 1066–1071. doi: 10.1523/JNEUROSCI.16-03-01066.1996.
- Yakovlev A.V., Kurmasheva E.D., Giniatullin R., Khalilov I., Sitdikova G.F. Hydrogen sulfide inhibits giant depolarizing potentials and abolishes epileptiform activity of neonatal rat hippocampal slices. Neuroscience, 2017, vol. 340, pp. 153–165. doi: 10.1016/j.neuroscience.2016.10.051.
- Gerasimova E., Lebedeva J., Yakovlev A., Zefirov A., Giniatullin R. A., Sitdikova G. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction. Neuroscience, 2015, vol. 303, pp. 577–585. doi: 10.1016/j.neuroscience.2015.07.036.
- Tyagi N., Gillespie W.C., Vacek J., Sen U., Tyagi S.C., Lominadze D. Activation of GABA-A receptor ameliorates homocysteine-induced MMP-9 activation by ERK pathway. J. Cell. Physiol., 2009, vol. 220, no. 1, pp. 257–266. doi: 10.1002/jcp.21757.
- Kamat P.K., Kalani A., Givvimani S., Sathnur P.B., Tyagi S.C., Tyagi N. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience, 2013, vol. 252, pp. 302–319. doi: 10.1016/j.neuroscience.2013.07.051.
- Kamat P.K., Kyles P., Kalani A., Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer's disease-like pathology, blood brain barrier disruption and synaptic disorder. Mol. Neurobiol., 2016, vol. 53, no. 4, pp. 2451–2467. doi: 10.1007/s12035-015-9212-4.
- Tang X.-Q., Shen X.-T., Huang Y.-E., Chen R.-Q., Ren Y.-K., Fang H.-R., Zhuang Y.-Y., Wang C.-Y. Inhibition of endogenous hydrogen sulfide generation is associated with homocysteine-induced neurotoxicity: Role of ERK1/2 activation. J. Mol. Neurosci., 2011, vol. 45, pp. 60–67. doi: 10.1007/s12031-010-9477-z.
- Cheng Z., Shen X., Jiang X., Shan H., Cimini M., Fang P., Ji Y., Park J.Y., Drosatos K., Yang X., Kevil C.G., Kishore R., Wang H. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide. Redox Biol., 2018, vol. 16, pp. 215–225. doi: 10.1016/j.redox.2018.02.006.
- Medina M., Urdiales J.L., Amores-Sánchez M.I. Roles of homocysteine in cell metabolism. Eur. J. Biochem., 2001, vol. 268, no. 14, pp. 3871–3882. doi: 10.1046/j.1432-1327.2001.02278.x.
- Sharma M., Tiwari M., Tiwari R.K. Hyperhomocysteinemia: Impact on neurodegenerative diseases. Basic Clin. Pharmacol. Toxicol., 2015 vol. 117, no. 5, pp. 287–296. doi: 10.1111/bcpt.12424.
- Jacobsen D.W. Homocysteine and vitamins in cardiovascular disease. Clin. Chem., 1998, vol. 44, no. 8, pt. 2, pp. 1833–1843.
- Brustolin S., Giugliani R., Félix T.M. Genetics of homocysteine metabolism and associated disorders. Braz. J. Med. Biol. Res., 2010, vol. 43, no. 1, pp. 1–7. doi: 10.1590/s0100-879x2009007500021.
- Troen A.M. The central nervous system in animal models of hyperhomocysteinemia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2005, vol. 29, no. 7, pp. 1140–1151. doi: 10.1016/j.pnpbp.2005.06.025.
- Obeid R., Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett., 2006, vol. 580, no. 13, pp. 2994–3005. doi: 10.1016/j.febslet.2006.04.088.
- Lea R.A., Ovcaric M., Sundholm J., MacMillan J., Griffiths L.R. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura. BMC Med., 2004, vol. 2, pp. 3–8. doi: 10.1186/1741-7015-2-3.
- Moustafa A.A., Hewedi D.H., Eissa A.M., Frydecka D., Misiak B. Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci., 2014, vol. 8, art. 343, pp. 1–10. doi: 10.3389/fnbeh.2014.00343
- Baydas G., Ozer M., Yasar A., Tuzcu M., Koz S.T. Melatonin improves learning and memory performances impaired by hyperhomocysteinemia in rats. Brain Res., 2005, vol. 1046, nos. 1–2, pp. 187–194. doi: 10.1016/j.brainres.2005.04.011.
- Blaise S.A., Nédélec E., Schroeder H., Alberto J.M., Bossenmeyer-Pourié C., Guéant J.L., Daval J-L. Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. Am. J. Pathol., 2007, vol. 170, no. 2, pp. 667–679. doi: 10.2353/ajpath.2007.060339.
- Gerasimova E., Yakovleva O., Burkhanova G., Ziyatdinova G., Khaertdinov N., Sitdikova G. Effects of maternal hyperhomocysteinemia on the early physical development and neurobehavioral maturation of rat offspring. BioNanoScience, 2017, vol. 7, pp. 155–158. doi: 10.1007/s12668-016-0326-6.
- Yakovleva O., Ziganshina A., Arslanova A., Khaertdinov N., Ziyatdinova G., Sitdikova G. Hydrogen sulfide prevented the developmental impairments of rats with prenatal hyperhomocysteinemi. Proc. 22nd Biennial Meeting of the International Society of Developmental Neuroscience. Development of Circuits, Functions, and Disorders in the Nervous System. Japan, Nara, 2018.
- Gutteridge J.M., Halliwell B. Antioxidants: Molecules, medicines, and myths. Biochem. Biophys. Res. Commun., 2010, vol. 393, pp. 561–564. doi: 10.1016/j.bbrc.2010.02.071.
- Hayden M.R., Tyagi S.C. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: The pleiotropic effects of folate supplementation. Nutr. J., 2004, vol. 3, no. 4, pp. 1–23. doi: 10.1186/1475-2891-3-4.
- Upchurch G.R. Jr., Welch G.N., Fabian A.J., Freedman J.E., Johnson J.L., Keaney J.F., Loscalzo J. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J. Biol. Chem., 1997, vol. 27, no. 27, pp. 17012–17017. doi: 10.1074/jbc.272.27.17012.
- Dayal S., Brown K.L., Weydert C.J., Oberley L.W., Arning E., Bottiglieri T., Faraci F.M., Lentz S.R. Deficiency of glutathione peroxidase-1 sensitizes hyperhomocysteinemic mice to endothelial dysfunction. Arterioscler., Thromb., Vasc., Biol., 2002, vol. 22, no. 12, pp. 1996–2000. doi: 10.1161/01.ATV.0000041629.92741.DC.
- Au A.L., Seto S.W., Chan S.W., Chan M.S., Kwan Y.W. Modulation by homocysteine of the iberiotoxin-sensitive, Ca2+-activated K+-channels of porcine coronary artery smooth muscle cells. Eur. J. Pharmacol., 2006, vol. 546, nos. 1–3, pp. 109–119. doi: 10.1016/j.ejphar.2006.06.073.
- Veeranki S., Tyagi S.C. Defective homocysteine metabolism: Potential implications for skeletal muscle malfunction. Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 15074–15091. doi: 10.3390/ijms140715074.
- Koz S.T., Gouwy N.T., Demir N., Nedzvetsky V.S., Etem E., Baydas, G. Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain. Int. J. Dev. Neurosci., 2010, vol. 28, no. 4, pp. 325–329. doi: 10.1016/j.ijdevneu.2010.02.006.
- Makhro A., Mashkina A.P., Solenaya O.A., Trunova O.A., Kozina L.S., Arutyunian A.V., Bulygina E.R. Prenatal hyperhomocysteinemia as a model of oxidative stress of the brain. Bull. Exp. Biol. Med., 2008, vol. 146, no. 1, pp. 33–35. doi: 10.1007/s10517-008-0233-0.
- Pustygina A.V., Milyutina Y.P., Zaloznyaya I.V., Arutyunyan A.V. Indices of oxidative stress in the brain of newborn rats subjected to prenatal hyperhomocysteinemia. Neurochem. J., 2015, vol. 9, no. 1, pp. 60–65. doi: 10.1134/S1819712415010079.
- Schweinberger B.M., Schwieder L., Scherer E., Sitta A., Vargas C.R., Wyse A.T.S. Development of an animal model for gestational hypermethioninemia in rat and its effect on brain Na+,K+-ATPase/Mg2+-ATPase activity and oxidative status of the offspring. Metab. Brain Dis., 2014, vol. 29, pp. 153–160. doi: 10.1007/s11011-013-9451-x.
- Lubos E., Loscalzo J., Handy D.E. Homocysteine and glutathione peroxidase-1. Antioxid. Redox Signal., 2007, vol. 9, no. 11, pp. 1923–1940. doi: 10.1089/ars.2007.1771.
- Lipton S.A., Kim W.-K., Choi Y.-B., Kumar S., D'Emilia D.M., Rayudu P.V., Arnelle D.R., Stamler J.S. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no. 11, pp. 5923–5928. doi: 10.1073/pnas.94.11.5923.
- Bolton A.D., Phillips M.A., Constantine-Paton M. Homocysteine reduces NMDAR desensitization and differentially modulates peak amplitude of NMDAR currents, depending on GluN2 subunit composition. J. Neurophysiol., 2013, vol. 110, no. 7, pp. 1567–1582. doi: 10.1152/jn.00809.2012.
- Sibarov D.A., Abushik P., Giniatullin R.A., Antonov S.M. GluN2A subunit-containing NMDA receptors are the preferential neuronal targets of homocysteine. Front. Cell. Neurosci., 2016, vol. 10, pp. 1–11. doi: 10.3389/fncel.2016.00246.
- Ganapathy P.S., White R.E., Ha Y., Bozard B.R., McNeil P.L., Caldwell R.W., Kumar S., Black S.M., Smith S.B. The role of N-methyl-D-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Invest. Ophthalmol. Vis. Sci., 2011, vol. 52, no. 8, pp. 5515–5524. doi: 10.1167/iovs.10-6870.
- Algaidi S.A., Christie L.A., Jenkinson A.M., Whalley L., Riedel G., Platt B. Long-term homocysteine exposure induces alterations in spatial learning, hippocampal signaling and synaptic plasticity. Exp. Neurol., 2006, vol. 197, no. 1, pp. 8–21. doi: 10.1016/j.expneurol.2005.07.003.
- Zieminska E., Stafiej A., Lazarewicz J.W. Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurons. Neurochem. Int., 2003, vol. 43, nos. 4–5, pp. 481–492. doi: 10.1016/S0197-0186(03)00038-X.
- Robert K., Pages C., Ledru A., Delabar J., Caboche J., Janel N. Regulation of extracellular signal-regulated kinase by homocysteine in hippocampus. Neuroscience, 2005, vol. 133, no. 4, pp. 925–935. doi: 10.1016/j.neuroscience.2005.03.034.
- Abushik P.A, Niittykoski M., Giniatullina R., Shakirzyanova A., Bart G., Fayuk D., Sibarov D.A., Antonov S.M., Giniatullin R. The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J. Neurochem., 2014, vol. 129, no. 2, pp. 264–274. doi: 10.1111/jnc.12615.
- Mudd S.H. Vascular disease and homocysteine metabolism. N. Engl. J. Med., 1985, vol. 313, pp. 751–753. doi: 10.1056/NEJM198509193131210.
- Schwaninger M., Ringleb P., Winter R., Kohl B., Fiehn W., Rieser P.A., Walter-Sack I. Elevated plasma concentrations of homocysteine in antiepileptic drug treatment. Epilepsia, 1999, vol. 40, no. 3, pp. 345–350. doi: 10.1111/j.1528-1157.1999.tb00716.x.
- Kubová H., Folbergrová J., Mares P. Seizures induced by homocysteine in rats during ontogenesis. Epilepsia, 1995, vol. 36, no. 8, pp. 750–756. doi: 10.1111/j.1528-1157.1995.tb01611.x.
- Mareś P., Folbergrová J., Kubová H. Excitatory aminoacids and epileptic seizures in immature brain. Physiol. Res., 2004, vol. 53, suppl. 1, pp. S115–S124.
- Schaub C., Uebachs M., Beck H., Linnebank M. Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons. Exp. Brain Res., 2013, vol. 225, no. 4, pp. 527–534. doi: 10.1007/s00221-012-3392-1.
- Yakovlev A.V., Kurmashova E., Zakharov A., Sitdikova G.F. Network-driven activity and neuronal excitability in hippocampus of neonatal rats with prenatal hyperhomocysteinemia. BioNanoScience, 2018, vol. 8, no. 1, pp. 304–309. doi:10.1007/s12668-017-0450-y.
For other references see (total number of references: 118)
For citation: Sitdikova G.F., Hermann A., Yakovlev A.V. Neurotoxic and neuroprotective effects of homocysteine and hydrogen sulfide. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 4, pp. 686–704.
The content is available under the license Creative Commons Attribution 4.0 License.