A.I. Golubev*, L.V. Malutina**, M.M. Salnikova***, Ya.I. Zabotin****
Kazan Federal University, Kazan, 420008 Russia
E-mail: *anatolii.golubev_1937@mail.ru, **Ludmila.Malutina06@gmail.com, ***m_salnikova@mail.ru, ****yaroslav_zabotin@rambler.ru
Received May 30, 2017
Abstract
Radical restructuring of the organism caused by the endoparasitic way of life largely influences the organization of the nervous system as the main mediator in relations with the environment, in particular with the internal environment of the host. Based on the original data on the fine structure of the nervous system of 18 species of helminthes from the phyla Plathelminthes, Nematoda, Acanthocephala, and Annelida, the idea of some plastic possibilities of nerve and neuroglial cells of worms, which, in our opinion, reflect their parasitic way of life, has been formulated. Particular attention has been paid to the structural plasticity of neurons of free-living and endoparasitic ecomorphs of the same species of oligochaetes, the ultrastructural differences of scolex and proglottid nerve cells of cestodes in the light of the strobilar theory, and the evolutionary role of the number of hosts in the life cycle of helminthes in the formation of the ultrastructure of their neurons.
Keywords: helminthes, plasticity, neurons, neuroglia, ultrastructure
Figure Captions
Fig. 1. Structural variations of the Nissl body in neurons of the nerve cord ganglias of the strobile of the cestode Dipylidium caninum. N – nucleus. Scale: 0.5 ?m.
Fig. 2. The structural scheme of scolex neuron of the procercoid of Pelichnibothrium speciosum. The arrows show plasmalemma invaginations and “lamellated corpuscles”. A region of the “lamellated corpuscle” is shown on the right side. Scale: 0.5 ?m.
Fig. 3. A neuron region of the nematode Oswaldocruzia biolata. N – neuron nucleus. The arrows show the plasmalemma. Scale: 0.5 ?m.
Fig. 4. A neuron region from the brain of the tapeworm Digramma interrupta. N – neuron nucleus. The arrows show plasmalemma invaginations. Scale: 0.5 ?m.
Fig. 5. Extracellular canals (ECC) in the neurogliar cell from the ganglia clusters of the ventral nerve cord of the European medicinal leech (Hirudo medicinalis). М – mitochondria, RG – cytoplasmic reservoirs in the neurogliar cell. Scale: 0.5 ?m.
Fig. 6. A region of the neurogliar cell of Hirudo medicinalis. M – mitochondria, RG – cytoplasmic reservoirs in the neurogliar cell, CPB – cytoplasmic bubbles. The arrow shows the area where a cytoplasmic bubble can possibly develop. Scale: 0.5 ?m.
Fig. 7. The scheme showing the arrangement of membrane-bound reservoirs in the cytoplasm of the neurogliar cell within the ganglia clusters of the ventral nerve cord of Hirudo medicinalis. М – mitochondria, RG – cytoplasmic reservoirs in the neurogliar cell.
References
1. Odening K. Einige Gedanken zum Thema Parasitismus und Evolution. Biol. Rudsch., 1983, Bd. 21, H. 2, S. 93–102. (In German)
2. Hodda M. Phylum Nematoda Cobb 1932. Zootaxa, 2011, no. 3148, pp. 63–95.
3. Golubev A.I., Sapaev E.A., Gerasimov N.N. Change in the ultrastructural organization of Chaetogaster lymnaei neurons in the transition to the parasitic form of life. Parasitologiya, 1978, vol. 12, no. 4, pp. 354–360. (In Russian)
4. Bullock T.H., Horridge G.A. Structure and Function in the Nervous Systems of Invertebrates. San Francisco, W. H. Freeman, 1965. 919 p.
5. Konorski Ju. Integrative Activity of the Brain. Moscow, Mir. 1970. 420 p. (In Russian)
6. Kotlyar B.I. Plasticity of Nerve Cells. Moscow, Mosk. Gos. Univ., 1977. 149 p. (In Russian)
7. Tiras N.R. Ultrastructure of Neurons and Pharmacological Impact. Ul'trastrukturnye issledovaniya plastichnosti mautnerovskikh neironov s ispol'zovaniem biologicheski aktivnykh veshchestv [Ultrastructural Studies of the Plasticity of Mauthner Neurons using Biologically Active Substances]. Pushchino, 1981, pp. 134–141. (In Russian)
8. Moshkov D.A. Adaptation and Ultrastructure of the Neuron. Moscow, Nauka, 1985. 200 p. (In Russian)
9. Rodríguez F.D., Vecino E. Stem cell plasticity, neuroprotection and regeneration in human eye diseases. Curr. Stem Cell Res. Ther., 2011, vol. 6, no. 1, pp. 73–81. doi: 10.2174/157488811794480708.
10. Golubev A.I., Malyutina L.V., Salnikova M.M. Particular features of the ultrastructure and chemistry of neurons of parasitic scolecids. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2007, vol. 149, no. 3, pp. p. 99–106. (In Russian)
11. Shmalgauzen I.I. Factors of Evolution (The Theory of Stabilizing Selection). Moscow, Leningrad. Izd. Akad. Nauk SSSR, 1946. 396 p. (In Russian)
12. Ivanov A.V. On the problem of the metamery of tapeworms. Tr. Zool. Inst. Akad. Nauk SSSR, 1979, vol. 84, pp. 25–33. (In Russian)
13. Golubev A.I. Electron Microscopy of the Nervous System of Worms. Kazan, Izd. Kazan. Univ, 1982. 109 p. (In Russian)
14. Salnikova M.M., Golubev A.I., Malutina L.V., Zabotin Y.I. Ultrastructure of the cerebral ganglion of the acanthocephalan Corynosoma strumosum. Invertebr. Zool., 2017, vol. 14, no. 2, pp. 181–189. doi: 10.15298/invertzool.14.2.13.
15. Kuffler S.W., Potter D.D. Glia in the leech central nervous systems: Physiological properties and neuron-glia relationships. J. Neurophysiol., 1964, vol. 27, no. 2, pp. 290–320.
For citation: Golubev A.I., Malutina L.V., Salnikova M.M., Zabotin Ya.I. Cellular plasticity of nervous system of helminthes at the ultrastructural level. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 3, pp. 409–420. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.