L.E. Kwong*, E.A. Pakhomov**
University of British Columbia, Vancouver, BC V6T 1Z4 Canada
E-mail: *lkwong@eoas.ubc.ca, **epakhomov@eos.ubc.ca
Received June 15, 2017
Full text PDF
Abstract
Estimating active carbon transport in aquatic ecosystems has proven to be a labor-intensive and time-consuming process. This study proposes a novel approach to assess active carbon transport of zooplankton and micronekton based on the biomass spectra theory. This method is unique, as compared to the previous studies, because it relies solely on organism size rather than taxonomy. To predict active carbon transport, we use abundance size spectra during the day and night in the epipelagic zone, binned into log-2 size bins, which can then be used to calculate nominal size class and total abundance for each size bin. These calculations are applied to pre-existing size-dependent rate equations for respiration, excretion, mortality and gut flux, along with system temperature, time spent at depth, and depth of vertical migration. In combination with optical and acoustic methods, we hope that this method will shed light on the vast contribution of zooplankton and micronekton to global carbon export, and encourage the inclusion of active carbon transport estimates into global biogeochemical models. This will aid better understanding of the climate change implications to the global carbon cycling.
Keywords: zooplankton, micronekton, vertical migrations, active carbon transport, biomass spectra theory
References
- Sabine C.L., Feely R.A., Gruber N., Key R.M., Lee K., Bullister J.L., Wanninkhof R., Wong C.S., Wallace D.W.R, Tilbrook B., Millero F.J., Peng T-H., Kozyr A., Ono T., Rios A.F. The oceanic sink for anthropogenic CO2. Science, 2004, vol. 305, no. 5682, pp. 367–371. doi: 10.1126/science.1097403.
- Volk T., Hoffert M.I. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-drive stmospheric CO2 changes. Geophys. Monogr. Ser., 1985, vol. 32, pp. 99–110.
- Broecker W.S. The ocean. Sci. Am., 1983, vol. 249, pp. 146–161.
- Steinberg D.K., Carlson C.A., Bates N.R., Goldthwait S.A., Madin L.P., Michaels A.F. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res., Part I, 2000, vol. 47, no. 1, pp. 137–158. doi: 10.1016/S0967-0637(99)00052-7.
- Bianchi D., Galbraith E.D., Carozza D.A., Mislan K.A.S., Stock C.A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci., 2013, vol. 6, pp. 545–548. doi: 10.1038/ngeo1837.
- Ducklow H.W., Steinberg D.K., Buesseler K.O. Upper ocean carbon export and the biological pump. Oceanography, 2001, vol. 14, no. 4, pp. 50–58.
- Turner J.T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol., 2002, vol. 27, no. 1, pp. 57–102. doi: 10.3354/ame027057.
- Buesseler K.O., Trull T.W., Steinberg D.K., Silver M.W., Siegel D.A., Saitoh S.I., Lamborg C.H., Lam P.J., Karl D.M., Jiao N.Z., Honda M.C., Elskens M., Dehairs F., Brown S.L., Boyd P.W., Bishop J.K.B., Bidigare R.R. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific. Deep Sea Res., Part II, 2008, vol. 55, nos. 14–15, pp. 1522–1539. doi: 10.1016/j.dsr2.2008.04.024.
- Giering S.L.C., Sanders R., Lampitt R.S., Anderson T.R., Tamburini Ch., Boutrif M., Zubkov M.V., Marsay C.M., Henson S.A., Saw K., Cook K., Mayor D.J. Reconciliation of the carbon budget in the ocean's twilight zone. Nature, 2014, vol. 507, pp. 480–483. doi:10.1038/nature13123.
- Steinberg D.K., Van Mooy B.A.S., Buesseler K.O., Boyd P.W., Kobari T., Karl D.M. Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnol. Oceanogr., 2008, vol. 53, no. 4, pp. 1327–1338. doi: 10.4319/lo.2008.53.4.1327.
- Siegel D.A., Buesseler K.O., Doney S.C., Sailley S.F., Behrenfeld M.J., Boyd P.W. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles, 2014, vol. 28, no. 3, pp. 181–196. doi: 10.1002/2013GB004743.
- Koppelmann R., Weikert H. Temporal changes of deep-sea mesozooplankton abundance in temperate NE Atlantic and estimates of the carbon budget. Mar. Ecol.: Prog. Ser., 1999, vol. 179, pp. 27–40.
- Hannides C.C.S., Popp B.N., Choy C.A., Drazen J.C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective. Limnol. Oceanogr., 2013, vol. 58, no. 6, pp. 1931–1946. doi: 10.4319/lo.2013.58.6.1931.
- Choy C.A., Wabnitz C.C.C., Weijerman M., Woodworth-Jefcoats P.A., Polovina J.J. Finding the way to the top: How the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Mar. Ecol.: Prog. Ser., 2016, vol. 549, pp. 9–25. doi: 10.3345/meps11680.
- Reinthaler T., van Aken H.M., Herndl G.J. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior. Deep Sea Res., Part II, 2010, vol. 57, no. 16, pp. 1572–1580. doi: 10.1016/j.dsr2.2010.02.023.
- Michaels A.F., Bates N.R., Buesseler K.O., Carlson C.A., Knap A.H. Carbon-cycle imbalances in the Sargasso Sea. Nature, 1994, vol. 372, pp. 537–540. doi: 10.1038/372537a0.
- Burd A.B., Hansell D.A., Steinberg D.K., Anderson, T.R., Arıstegui J., Buesseler K.O., Dehairs F., Jackson G.A., Baltar F., Beaupre S.R., Kadko D.C., Koppelmann R., Lampitt R.S., Nagata T., Reinthaler T., Robinson C., Robison B.H., Tamburini C., Tanaka T. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$♯! is wrong with present calculations of carbon budgets ? Deep Sea Res., Part II, 2010, vol. 57, no. 16, pp. 1557–1571. doi: 10.1016/j.dsr2.2010.02.022.
- Siegel D.A., Buesseler K.O., Doney S.C., Sailley S.F., Behrenfeld M.J., Boyd P.W. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles, 2014, vol. 28, no. 3, pp. 181–196. doi: 10.1002/2013GB004743.
- Hidaka K., Kawaguchi K., Murakami M., Takahashi M. Downward transport of organic carbon by diel migratory micronekton in the western equatorial pacific: Its quantitative and qualitative importance. Deep Sea Res., Part I, 2001, vol. 48, no. 8, pp. 1923–1939. doi: 10.1016/S0967-0637(01)00003-6.
- Ariza A., Garijo J.C., Landeira J.M., Bordes F., Hernández-León S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr., 2015, vol. 134, pp. 330–342. doi: 10.1016/j.pocean.2015.03.003.
- Angel M.V., Pugh P.R. Quantification of diel vertical migration by macroplankton and micronektonic taxa in the northeast Atlantic. Hydrobiologia, 2000, vol. 440, nos. 1–3, pp. 161–179. doi: 10.1023/A:1004115010030.
- Brodeur R.D., Yamamura O. Micronekton of the North Pacific, PICES Sci. Rep., 2005, vol. 30, pp. 1–115.
- Longhurst A.R. The Ecology of the Seas. Cushing D.H., Walsh J.J. (Eds.). Vertical Migration. Oxford, Blackwell Sci. Publ., 1976, pp. 116–137.
- Ringelberg J. Changes in light intensity and diel vertical migration: A comparison of marine and freshwater environments. J. Mar. Biol. Assoc. UK, 1995, vol. 75, pp. 15–25. doi: 10.1017/S0025315400015162.
- Clarke T.R. Comparison of abundance estimates of small fishes by three towed nets and preliminary results of the use of small purse seines as sampling devices. Biol. Oceanogr., 1983, vol. 2, pp. 311–340.
- Bailey T.G., Robinson B.H. Food availability as a selective factor on the chemical compositions of midwater fishes in the eastern North Pacific. Mar. Biol., 1986, vol. 91, no. 1, pp. 131–141. doi: 10.1007/BF00397578.
- Kobari T., Steinberg D.K., Ueda A., Tsuda A., Silver M.W., Kitamura M. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep Sea Res., Part I, 2008, vol. 55, nos. 14–15, pp. 1648–1660. doi: 10.1016/j.dsr2.2008.04.016.
- Hernández-León S., Franchy G., Moyano M., Menéndez I., Schmoker C., Putzeys S. Carbon sequestration and zooplankton lunar cycles: Could we be missing a major component of the biological pump? Limnol. Oceanogr., 2010, vol. 55, no. 6, pp. 2503–2512. doi: 10.4319/lo.2010.55.6.2503.
- Iwasa Y. Vertical migration of zooplankton: A game between predator and prey. Am. Nat., 1982, vol. 120, no. 2, pp. 171–180. doi: 10.1086/283980.
- Vuorinen I. Vertical migration of Eurytemora (Crustacea, Copepoda), a compromise between the risk of predation and decreased fecundity. J. Plankton Res., 1987, vol. 9, pp. 1037–1046.
- Zaret T.M., Suffern J.S. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr., 1976, vol. 21, no. 6, pp. 804–813. doi: 10.4319/lo.1976.21.6.0804.
- Hernández-León S., Gómez M., Pagazaurtundua M., Portillo-Hahnefeld A., Montero I., Almeida C. Vertical distribution of zooplankton in Canary Island waters: Implications for export flux. Deep Sea Res., Part I, 2001, vol. 48, no. 4, pp. 1071–1092. doi: 10.1016/S0967-0637(00)00074-1.
- Longhurst A.R., Bedo A.W., Harrison W.G., Head E.J.., Sameoto D. Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res., Part A, 1990, vol. 37, no. 4, pp. 685–694. doi: 10.1016/0198-0149(90)90098-G.
- Zhang X., Dam H.G. Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific, Deep Sea Res., Part II, 1997, vol. 44, nos. 9–10, pp. 2191–2202. doi: 10.1016/S0967-0645(97)00060-X.
- Dam H.G., Roman M.R., Youngbluth M.J. Downward export of respiratory carbon and dissolved inorganic nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Res., Part I, 1995, vol. 42, no. 7, pp. 1187–1197. doi: 10.1016/0967-0637(95)00048-B.
- Le Borgne R., Rodier M. Net zooplankton and the biological pump: A comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Res., Part II, 1997, vol. 44, nos. 9–10, pp. 2003–2023. doi: 10.1016/S0967-0645(97)00034-9.
- Rodier M., LeBorgne R. Export flux of particles at the equator in the western and central Pacific Ocean. Deep Sea Res., Part II, 1997, vol. 44, pp. 2085–2113.
- Morales C.E. Carbon and nitrogen fluxes in the oceans: The contribution by zooplankton migrants to active transport in the North Atlantic during the Joint Global Ocean Flux Study. J. Plankton Res., 1999, vol. 21, no. 9, pp. 1799–1808. doi: 10.1093/plankt/21.9.1799.
- Al-Mutairi H., Landry M.R. Active export of carbon and nitrogen at station ALOHA by diel migrant zooplankton. Deep Sea Res., Part II, 2001, vol. 48, nos. 8–9, pp. 2083–2103. doi: 10.1016/S0967-0645(00)00174-0.
- Podeswa Y., Pakhomov E.A. Active carbon transport and feeding ecology of pelagic decapods in the North Pacific subtropical gyre, Arthropoda Sel., 2015, vol. 24, pp. 317–334.
- Davison P.C. The export of carbon mediated by mesopelagic fishes in the northeast Pacific Ocean. PhD Thesis. San Diego, Calif., Univ. of Calif., 2011. 165 p.
- Hudson J.M., Steinberg D.K., Sutton T.T., Graves J.E., Latour R.J. Myctophid feeding ecology and carbon transport along the northern Mid-atlantic Ridge. Deep Sea Res., Part I, 2014, vol. 93, pp. 104–116. doi: 10.1016/j.dsr.2014.07.002.
- Kwong L.E. A novel approach to estimating active carbon flux using the biomass spectra theory. MSc Thesis. Vancouver, B. C., Univ. of B. C., 2016. 105 p.
- Isla J.A., Ceballos S., Huskin I., Anadón R., Álvarez-Marqués F. Mesozooplankton distribution, metabolism and grazing in an anticyclonic slope water oceanic eddy (SWODDY) in the Bay of Biscay. Mar. Biol., 2004, vol. 145, no. 6,. pp. 1201–1212. doi: 10.1007/s00227-004-1408-5.
- Isla A., Scharek R., Latasa M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst., 2015, vol. 143, pp. 86–97. doi: 10.1016/j.jmarsys.2014.10.017.
- Isla J., Anadon R. Mesozooplankton size-fractionated metabolism and feeding off NW Spain during autumn: Effects of a poleward current. ICES J. Mar. Sci., 2004, vol. 61, no. 4, pp. 526–534. doi: 10.1016/j.icesjms.2004.03.014.
- Kobari T., Kitamura M., Minowa M., Isami H., Akamatsu H., Kawakami H., Matsumoto K., Wakita M., Honda M.C. Impacts of the wintertime mesozooplankton community to downward carbon flux in the subarctic and subtropical Pacific Oceans Deep Sea Res., Part I, 2013, vol. 81, pp. 78–88. doi: 10.1016/j.dsr.2013.07.003.
- Longhurst A., Williams R. Carbon flux by seasonal vertical migrant copepods is a small number. J. Plankton Res., 1992, vol. 14, no. 11, pp. 1495–1509. doi: 10.1093/plankt/14.11.1495.
- Packard T.T., Gómez M. Modeling vertical carbon flux from zooplankton respiration. Prog. Oceanogr., 2013, vol. 110, pp. 59–68. doi: 10.1016/j.pocean.2013.01.003.
- Podeswa Y. Active carbon transport and feeding ecology of pelagic decapods in the North Pacific subtropical gyre. MSc Thesis. Vancouver, B. C., Univ. of B. C., 2012. 129 p.
- Schukat A., Bode M., Auel H., Carballo R., Martin B., Koppelmann R., Hagen W. Pelagic decapods in the northern Benguela upwelling system: Distribution, ecophysiology and contribution to active carbon flux. Deep Sea Res., Part I, 2013, vol. 75, pp. 146–156. doi: 10.1016/j.dsr.2013.02.003.
- Schnetzer, A., Steinberg D.K. Active transport of particulate organic carbon and nitrogen by vertically migrating zooplankton in the Sargasso Sea. Mar. Ecol.: Prog. Ser., 2002, vol. 234, pp. 71–84. doi: 10.3354/meps234071.
- Stukel M., Ohman M., Benitez-Nelson C., Landry M. Contributions of mesozooplankton to vertical carbon export in a coastal upwelling system. Mar. Ecol.: Prog. Ser., 2013, vol. 491, pp. 47–65. doi: 10.3354/meps10453.
- Takahashi K., Kuwata A., Sugisaki H., Uchikawa K., Saito H. Downward carbon transport by diel vertical migration of the copepods Metridia pacifica and Metridia okhotensis in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Res., Part I, 2009, vol. 56, no. 10, pp. 1777–1791. doi: 10.1016/j.dsr.2009.05.006.
- Williams A., Koslow J.A. Species composition, biomass and vertical distribution of micronekton over the mid-slope region off southern Tasmania, Australia. Mar. Biol., 1997, vol. 130, no. 2, pp. 259–276. doi: 10.1007/s002270050246.
- Yebra L., Almeida C., Hernández-León S. Vertical distribution of zooplankton and active flux across an anticyclonic eddy in the Canary Island waters. Deep Sea Res., Part I, 2005, vol. 52, no. 1, pp. 69–83. doi: 10.1016/j.dsr.2004.08.010.
- Darnis G., Fortier L. Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean). J. Geophys. Res., 2012, vol. 117, no. C4, art. C04013, pp. 1–12. doi: 10.1029/2011JC007374.
- Davison P.C., Checkley D.M., Koslow J.A., Barlow J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr., 2013, vol. 116, pp. 14–30. doi: 10.1016/j.pocean.2013.05.013.
- Baird R.C., Hopkins T.L., Wilson D.F. Diet and feeding chronology of Diaphus taaningi (Myctophidae) in the Cariaco Trench, Copeia, 1975, vol. 2, pp. 356–365.
- Pakhomov E. A., Perissinotto R., McQuaid C.D. Prey composition and daily rations of myctophid fishes in the Southern Ocean. Mar. Ecol.: Prog. Ser., 1996, vol. 134, pp. 1–14. doi: 10.3354/meps134001.
- Buesseler K.O., Lamborg C.H., Boyd P.W., Lam P.J., Trull T.W., Bidigare R.R., Bishop J.K.B., Casciotti K.L., Dehairs F., Elskens M., Honda M., Karl D.M., Siegel D., Silver M.W., Steinberg D.K., Valdes J., Mooy B. Van, Wilson S. Revisiting carbon flux through the ocean's twilight zone. Science, 2007, vol. 316, no. 5824, pp. 567–570. doi: 10.1126/science.1137959.
- Falkowski P.G., Laws E.A., Barber R.T., Murray J.W. Ocean Biogeochemistry. Phytoplankton and Their Role in Primary, New, and Export Production. Berlin, Heidelberg, Springer, 2003, pp. 99–121. doi: 10.1007/978-3-642-55844-3_5.
- Martz T.R., Johnson K.S., Riser S.C. Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific. Limnol. Oceanogr., 2008, vol. 53, no. 5, part 2, pp. 2094–2111. doi: 10.4319/lo.2008.53.5_part_2.2094.
- Usbeck R., Schlitzer R., Fischer G., Wefer G. Particle fluxes in the ocean: Comparison of sediment trap data with results from inverse modeling. J. Mar. Syst., 2003, vol. 39, nos. 3–4, pp. 167–183. doi: 10.1016/S0924-7963(03)00029-0.
- Riser W.C., Reigstad M., Wassmann P. Zooplankton-mediated carbon export: A seasonal study in a northern Norwegian fjord. Mar. Biol. Res., 2010, vol. 6, no. 5, pp. 461–471. doi: 10.1080/17451000903437067.
- Basedow S.L., Zhou M., Tande K.S. Secondary production at the Polar Front, Barents Sea, August 2007. J. Mar. Syst., 2014, vol. 130, pp. 147–159. doi: 10.1016/j.jmarsys.2013.07.015.
- Sheldon R.W., Prakash A., Sutcliffe H. The size distribution of particles in the ocean. Limnol. Oceanogr., 1972, vol. 17, no. 3, pp. 327–340. doi: 10.4319/lo.1972.17.3.0327.
- Sheldon R.W., Sutcliffe W.H. Jr., Paranjape M.A. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Board Can., 1977, vol. 34, no. 12, pp. 2344–2353. doi : 10.1139/f77-314.
- Platt T., Denman K. The structure of pelagic marine ecosystems. J. Cons., Cons. Int. Explor. Mer., 1978, vol. 173, pp. 60–65.
- Silvert W., Platt T. Evolution and Ecology of Zooplankton Communities. Kerfoot W.C. (Ed.). Dynamic Energy-Flow Model of the Particle Size Distribution in Pelagic Ecosystems. Hanover, Univ. Press of N. Engl., 1980, pp. 754–763.
- Cousins S.H. Ecosystem Theory for Biological Oceanography. Ulanowicz R.E., Platt T. (Eds.). The Trophic Continuum in Marine Ecosystems Structure and Equations for a Predictive Model. Can. Bull. Fish. Aquat. Sci., 1985, vol. 213, pp. 76–93.
- Platt T. Structure of the marine ecosystem: Its allometric basis. Can. Bull. Fish. Aquat. Sci., 1985, vol. 213, pp. 55–64.
- Beers J.R., Read F.M.H., Stewart G.L. Seasonal abundance of the microplankton population in the North Pacific Central Gyre, Deep-Sea Res., Part A, 1982, vol. 29, no. 2, pp. 227–245. doi: 10.1016/0198-0149(82)90111-X.
- Echevarría F., Carrillo O., Jiménez P., Sánchez-Castillo P., Cruz-Pizarro L., Rodriguez L. The size-abundance distribution and taxonomic composition of plankton in an oligotrophic, high mountain lake (la Caldera, Sierra Nevada, Spain). J. Plankton Res., 1990, vol. 12, no. 2, pp. 415–422. doi: 10.1093/plankt/12.2.415.
- Platt T., Lewis M., Geiderl R. Flows of Energy and Materials in Marine Ecosystems. Fasham M.J.R. (Ed.). Thermodynamics of the Pelagic Ecosystem: Elementary Closure Conditions for Biological Production in the Open Ocean. New York; NY, Plenum Press, 1984, pp. 49–84.
- Rodriguez J., Mullin M.M. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr., 1986, vol. 31, no. 2, pp. 361–370. doi: 10.4319/lo.1986.31.2.0361.
- Rodriguez J., Mullin M. Diel and interannual variation of size distribution of oceanic zooplanktonic biomass. Ecology, 1986, vol. 67, no. 1, pp. 215–222. doi: 10.2307/1938521.
- Schwinghamer P. Characteristic size distributions of integral benthic communities. Can. J. Fish. Aquat. Sci., 1981, vol. 38, no. 10, pp. 1255–1263. doi: 10.1139/f81-167.
- Schwinghamer P. Observations on size-structure and pelagic coupling of some shelf and abyssal benthic communities. Proc. 19th Eur. Mar. Biol. Symp. Gobbs P.E. (Ed.). Cambridge, Cambridge Univ. Press, 1985, pp. 347–359.
- Sprules W.G., Casselman J.M., Shuter B.J. Size distribution of pelagic particles in lakes. Can. J. Fish. Aquat. Sci., 1983, vol. 40, no. 10, pp. 1761–1769. doi: 10.1139/f83-205.
- Sprules W.G., Knoechel R. Trophic Interactions within Aquatic Ecosystems. Meyers D.G., Strickland R. (Eds.). Lake Ecosystem Dynamics based on Functional Representations of Trophic Components. Boulder, Colo., Westview Press, pp. 383–403.
- Sprules W.G., Munawar M. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci., 1986, vol. 43, no. 9, pp. 1789–1794. doi: 10.1139/f86-222.
- Warwick R.M., Clarke K.R. Species size distributions in marine benthic communities. Oecologia, 1984, vol. 61, no. 1, pp. 32–41. doi: 10.1007/BF00379085.
- Witek Z., Krajewska-Soltys A. Some examples of the epipelagic plankton size structure in high latitude oceans. J. Plankton Res., 1989, vol. 11, pp. 1143–1155. doi: 10.1093/plankt/11.6.1143.
- Clement T.A., Murry B.A., Uzarski D.G. Fish community size structure of small lakes: The role of lake size, biodiversity and disturbance. J. Freshwater Ecol., 2015, vol. 30, no. 4, pp. 557–568. doi: 10.1080/02705060.2015.1030787.
- Genin A. Biomass and body size of oceanic plankton. Trends Ecol. Evol., 1986, vol. 1, pp. 55–56.
- Macpherson E., Gordoa A., García-Rubies A. Biomass size spectra in littoral fishes in protected and unprotected areas in the nw mediterranean. Estuarine, Coastal Shelf Sci., 2002, vol. 55, no. 5, pp. 777–788. doi: 10.1006/ecss.2001.0939.
- Borgmann U., Shear H., Moore J. Zooplankton and potential fish production in Lake Ontario, Can. J. Fish. Aquat. Sci., 1984, vol. 41, no. 9, pp. 1303–1309. doi: 10.1139/f84-159.
- Moloney C.L., Field J.G. Use of particle-size data to predict potential pelagic-fish yields of some southern African areas. S. Afr. J. Mar. Sci., 1985, vol. 3, pp. 119–128.
- Thomann R.V. Perspective on Lake Ecosystem Modelling. Scavia D., Robertson A. (Eds.). An Analysis of PCB in Lake Ontario Using Size-Dependent Food Chain Model. Ann Arbor. Sci. Publ., 1979, pp. 293–320.
- Thomann R.V. Equilibirum model of fate of microcontaminants in diverse aquatic food chains. Can. J. Fish. Aquat. Sci., 1981, vol. 38, no. 3, pp. 280–296. doi: 10.1139/f81-040.
- Griesbach S., Peters R.H., Youakim S. An allometric model for pesticide bioaccumulation. Can. J. Fish. Aquat. Sci., 1982, vol. 39, no. 5, pp. 727−735. doi: 10.1139/f82-101.
- Borgmann U., Whittle D.M. Particle-size-conversion efficiency and contaminant concentrations in Lake Ontario biota. Can. J. Fish. Aquat. Sci., 1983, vol. 40, no. 3, pp. 328–336. doi: 10.1139/f83-048.
- Sabeel R.A.O., Vanreusel A. Potential impact of mangrove clearance on biomass and biomass size spectra of nematode along the Sudanese Red Sea coast. Mar. Environ. Res., 2015, vol. 103, pp. 46–55. doi: 10.1016/j.marenvres.2014.11.003.
- Zhou M., Huntley M.E. Population dynamics theory of plankton based on biomass spectra. Mar. Ecol.: Prog. Ser., 1997, vol. 159, pp. 61–73.
- Kerr S.R., Dickie L.M. The Biomass Spectrum: A Predator-Prey Theory of Aquatic Production. New York, Columbia Univ. Press, 2001. 320 p.
- Zhou M. What determines the slope of a plankton biomass spectrum? J. Plankton Res., 2006, vol. 28, no. 5, pp. 437–448. doi: 10.1093/plankt/fbi119.
- Zhou M., Carlotti F., Zhu Y. A size-spectrum zooplankton closure model for ecosystem modelling. J. Plankton Res., 2010, vol. 32, pp. 1147–1165.
- Thompson G.A., Dinofrio E.O., Alder V.A. Structure, abundance and biomass size spectra of copepods and other zooplankton communities in upper waters of the Southwestern Atlantic Ocean during summer. J. Plankton Res., 2013, vol. 35, no. 3, pp. 610–629. doi: 10.1093/plankt/fbt014.
- Suthers I.M., Taggart C.T., Rissik D., Baird M.E. Day and night ichthyoplankton assemblages and zooplankton biomass size spectrum in a deep ocean island wake. Mar. Ecol.: Prog. Ser., 2006, vol. 322, pp. 225–238. doi: 10.3354/meps322225.
For other references see (total number of references: 123)
For citation: Kwong L.E., Pakhomov E.A. Assessment of active vertical carbon transport: New methodology. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 3, pp. 492–509.
The content is available under the license Creative Commons Attribution 4.0 License.