V.N. Paimushina,b∗, R.A. Kayumovc,b∗∗, F.R. Shakirzyanovc,b∗∗∗, S.A. Kholmogorova,b∗∗∗∗
aKazan National Research Technical University named after A.N. Tupolev – KAI, Kazan, 420111 Russia
bKazan Federal University, Kazan, 420008 Russia
cKazan State University of Architecture and Engineering, Kazan, 420043 Russia
E-mail: ∗vpajmushin@mail.ru, ∗∗Kayumov@rambler.ru, ∗∗∗faritbox@mail.ru, ∗∗∗∗hkazan@yandex.ru
Received April 25, 2022
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2541-7746.2022.2-3.221-243
For citation: Pajmushin V.N., Kayumov R.A., Shakirzyanov F.R., Kholmogorov S.A. About the causes of the bearing capacity loss of a composite beam under three-point bending. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2022, vol. 164, no. 2–3, pp. 221–243. doi: 10.26907/2541-7746.2022.2-3.221-243. (In Russian)
Abstract
This article considers the results of an experimental and numerical study of the three-point bending problems of a composite specimen (beam). The numerical analysis of the beam behavior, in a physically and geometrically nonlinear statement of the problem, assumed that the beam is made by layering a unidirectional carbon fiber along the specimen axis. The Tsai– Wu criterion was used to determine the ultimate load at which the composite phases of the specimen lose their strength. The comparative analysis of the specimen behavior at different values of the beam thickness and the diameter of the loading roller was carried out. The results obtained show that the failure of the short specimens occurs as the material loses its strength under the loading roller (in the middle), and the long specimens become delaminated along the adhesive layer. This effect is explained by the loss of stability of the adhesive layer in a non-classical transverse shear mode. Our study demonstrates that the roller diameter has practically no effect on the value of the ultimate load, while the load at which the layer buckles on the front surface of the specimen is very sensitive to changes in its value. A good correlation of the numerical results with the experimental data was revealed.
Keywords: composite, geometric nonlinearity, physical nonlinearity, buckling, strength, adhesive layer, specimen
Acknowledgments. This study was supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030, section 1) and the Russian Science Foundation (project no. 19-79-10018, sections 2–3).
References
- Paimushin V.N., Kayumov R.A., Shakirzyanov F.R., Kholmogorov S.A. On the specifics of behavior of the sandwich plate composite facing layers under local loading. Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., 2020, no. 4, pp. 152–164. doi: 10.15593/perm.mech/2020.4.13
- Paimushin V.N., Makarov M.V., Badriev I.B., Kholmogorov S.A. Geometrically nonlinear strain and buckling analysis of sandwich plates and shells reinforced on their edge. In: Shell Structures: Theory and Applications. Vol. 4. London, CRC Press, 2018, pp. 267–270. doi: 10.1201/9781315166605-59.
- Badriev I.B., Makarov M.V., Paimushin V.N. Solvability of physically and geomentrically nonlinear problem of the theory of sandwich plates with transversally-soft core. Russ. Math., 2015, vol. 59, no. 10, pp. 57–60. doi: 10.3103/S1066369X15100072.
- Thomsen O.T. Theoretical and experimental investigation local bending effects in sandwich plates. Compos. Struct., 1995, vol. 30, no. 1, pp. 85–101. doi: 10.1016/0263-8223(94)00029-8.
- Thomsen O.T., Rits W., Eaton D.C.G., Dupont O., Queekers P. Ply drop-off effects in CFRP/honeycomb sandwich panels – experimental results. Compos. Sci. Technol., 1996, vol. 56, no. 4, pp. 423–431, 433–437. doi: 10.1016/0266-3538(96)00007-3.
- Vahterova Y.A., Min Y.N. Effect of shape of armoring fibers on strength of composite materials. Turk. J. Comput. Math. Educ., 2021, vol. 12, no. 2, pp. 2703–2708. doi: 10.17762/turcomat.v12i2.2295.
- Paimushin V.N., Kholmogorov S.A., Makarov M.V., Tarlakovskii D.V., Lukaszewicz A. Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests. Z. Angew. Math. Mech., 2019, vol. 99, no. 1, art. e201800063, pp. 1–25. doi: 10.1002/zamm.201800063.
- Petras A., Sutcliffe M.P.F. Failure mode maps for honeycomb sandwich panels. Compos. Struct., 2019, vol. 44, no. 4, pp. 237–252. doi: 10.1016/S0263-8223(98)00123-8.
- Rupp P., Elsner P., Weidenmann K.A. Failure mode maps for four-point-bending of hybrid sandwich structures with carbon fiber reinforced plastic face sheets and aluminum foam cores manufactured by a polyurethane spraying process. J. Sandwich Struct. Mater., 2019, vol. 8, no. 21, pp. 2654–2679. doi: 10.1177/1099636217722052.
- Shi H., Liu W., Fang H. Damage characteristics analysis of GFRP-Balsa sandwich beams under four-point fatigue bending. Compos. Part A: Appl. Sci. Manuf., 2018, vol. 109, pp. 564–577. doi: 10.1016/j.compositesa.2018.04.005.
- Sokolinsky V.S., Shen H., Vaikhanski L., Nutt S.R. Experimental and analytical study of nonlinear bending response of sandwich beams. Compos. Struct., 2003, vol. 60, no. 2, pp. 219–229. doi: 10.1016/S0263-8223(02)00293-3.
- Banghai J., Zhibin L., Fangyun L. Failure mechanisms of sandwich beams subjected to three-point bending. Compos. Struct., 2015, vol. 133, pp. 739–745. doi: 10.1016/j.compstruct.2015.07.056.
- Fathi A., Woff-Fabris F., Altstadt V., Gatzi R. An investigation of the flexural properties of balsa and polymer foam core sandwich structures: Influence of core type and contour finishing options. J. Sandwich Struct. Mater., 2013, vol. 15, no. 5, pp. 487–508. doi: 10.1177/1099636213487004.
- Crupi V., Epasto G., Guglielmino E. Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam. Mar. Struct., 2013, vol. 30, pp. 74–96. doi: 10.1016/j.marstruc.2012.11.002.
- Shi H., Liu W., Fang H. Damage characteristics analysis of GFRP-Balsa sandwich beams under four-point fatigue bending. Compos.: Part A, 2018, vol. 109, pp. 564–577. doi: 10.1016/j.compositesa.2018.04.005.
- Alila F., Fajoui J., Gerard R., Casari P., Kchaou M., Jacquemin F. Viscoelastic behaviour investigation and new developed laboratory slamming test on foam core sandwich. J. Sandwich Struct. Mater., 2020, vol. 22, no. 6, pp. 2049–2074. doi: 10.1177/1099636218792729.
- Piovar S., Kormanikova E. Sandwich beam in four-point bending test: Experiment and numerical models. Adv. Mater. Res., 2014, vol. 969, pp. 316–319. doi: 10.4028/www.scientific.net/AMR.969.316.
- Russo A., Zuccarello B. Experimental and numerical evaluation of the mechanical behaviour of GFRP sandwich panels. Compos. Struct., 2007, vol. 81, no. 4, pp. 575–586. doi: 10.1016/j.compstruct.2006.10.007.
- Tarnopol’skii Yu.M., Kintsis T.Ya. Metody statisticheskikh ispytanii armirovannykh plastikov [Methods of Static Testing of Reinforced Plastics]. Moscow, Khimiya, 1975. 262 p. (In Russian)
- Carbajal N., Mujika F. Determination of compressive strength of unidirectional composites by three-point bending tests. Polym. Test., 2009, vol. 28, no. 2, pp. 150–156. doi: 10.1016/j.polymertesting.2008.11.003.
- Carbajal N., Mujika F. Determination of longitudinal compressive strength of long fiber composites by three-point bending of [0m/90n/0p] cross-ply laminated strips. Polym. Test., 2009, vol. 28, no. 6, pp. 618–626. doi: 10.1016/j.polymertesting.2009.05.005.
- Dufort L., Drapier S., Grediac M. Closed-form solution for the cross-section warping in short beams under three-point bending. Compos. Struct., 2001, vol. 52, no. 2, pp. 233–246. doi: 10.1016/S0263-8223(00)00171-9.
- Beldica C.E., Hilton H.H. Nonlinear viscoelastic beam bending with piezoelectric control – analytical and computational simulations. Compos. Struct., 2001, vol. 51, no. 2, pp. 195– 203. doi: 10.1016/S0263-8223(00)00139-2.
- Rabotnov Yu.N., Shesterikov S.A. Creep stability of columns and plates. J. Mech. Phys. Solids, vol. 6, no. 1, pp. 27–34. doi: 10.1016/0022-5096(57)90044-3.
- Shesterikov S.A. Criterion of stability of columns in creep. Prikl. Mat. Mekh., 1959, vol. 23, no. 6, pp. 1101–1106. (In Russian)
- Kuznetsov A.P., Kurshin L.M. Using the hardening theory to solve some problems with the stability of plates and shells in creep. Prikl. Mekh. Tekh. Fiz., 1960, no. 4, pp. 84–89. (In Russian)
- Shesterikov S.A. Buckling under creep considering instantaneous plastic deformations. Prikl. Mekh. Tekh. Fiz., 1963, no. 2, pp. 124–129. (In Russian)
- Teregulov I.G. Stability of plates and shells subject to unsteady creep. In: Issledovaniya po teorii plastin i obolochek [Studies on the Theory of Plates and Shells]. Kazan, Izd. Kazan. Univ., 1965, no. 3, pp. 237–243. (In Russian)
- Pian T.H.H. Creep buckling of curved beam under lateral loading. Proc. 3rd U.S. Nat. Congr. Appl. Mech. New York, Pergamon Press, 1958, pp. 649–654.
- Dumansky A.M., Liu Hao Analysis of anisotropy of time-dependent and nonlinear properties of unidirectional CFRP. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 683, art. 012093, pp. 1–7. doi: 10.1088/1757-899X/683/1/012093.
- Meng M., Le H.R., Rizvi M.J., Grove S.M. 3D FEA modeling of laminated composites in bending and their failure mechanisms. Compos. Struct., 2015, vol. 119, pp. 693–708. doi: 10.1016/j.compstruct.2014.09.048.
- Obraztsov I.F., Vasil’ev V.V. Nonlinear phenomenological models of the deformation of fibrous composite materials. Mech. Compos. Mater., 1982, vol. 18, no. 3, pp. 259–262. doi: 10.1007/BF00604300.
- Xie M., Adams D.F. A plasticity model for unidirectional composite materials and its applications in modeling composites testing. Compos. Sci. Technol., 1995, vol. 54, no. 1, pp. 11–21. doi: 10.1016/0266-3538(95)00035-6.
- Lee M.S., Seo H.Y., Kang C.G. Comparative study on mechanical properties of CR 340/CFRP composites through three point bending test by using theoretical and experimental methods. Int. J. Precis. Eng. Manuf.-Green Technol., 2016, vol. 3, no. 4, pp. 359–365. doi: 10.1007/s40684-016-0045-z.
- Paimushin V.N., Kholmogorov S.A., Kaymov R.A. Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 4, pp. 473–492. (In Russian)
- Mujika F., Pujana J., Olave M. On the determination of out-of-plane elastic properties of honeycomb sandwich panels. Polym. Test., 2011, vol. 30, no. 2, pp. 222–228. doi: 10.1016/j.polymertesting.2010.12.005.
- Fedotenkov G.V., Tarlakovsky D.V., Vahterova Y.A. Identification of non-stationary load upon Timoshenko beam. Lobachevskii J. Math., 2019, vol. 40, no. 4, pp. 439–447. doi: 10.1134/S1995080219040061.
- Grinevich A.V., Yakovlev N.O., Slavin A.V. Criteria of the failure of polymer matrix composites (review). Tr. VIAM, 2019, no. 7. doi: 10.18577/2307-6046-2019-0-7-92-111.
- Narayanaswami R., Adelman H.M. Evaluation of the Tensor Polynomial and Hoffman strength theories for composite materials. J. Compos. Mater., 1977, vol. 11, no. 4, pp. 366– 377. doi: 10.1177/002199837701100401.
- Washizu K. Variatsionnye metody v teorii uprugosti i plastichnosti [Variational Methods in Elasticity and Plasticity]. Moscow, Mir, 1987. 542 p. (In Russian)
- Bonet J., Wood D. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge Univ. Press, 2008. xx, 318 p. doi: 10.1017/CBO9780511755446.
- Zienkiewicz O.C., Taylor R.L. The Finite Element Method. Vol. 2: Solid mechanics. Oxford, UK, Butterworth-Heinemann, 2000. 316 p.
- Golovanov A.I., Berezhnoi D.V. Metod konechnykh elementov v mekhanike deformiruemykh tverdykh tel [Finite-Element Method in Mechanics of Deformable Solids]. Kazan, DAS, 2001. 301 p. (In Russian)
- Riks E. An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct., 1979, vol. 15, no. 7, pp. 529–551. doi: 10.1016/0020-7683(79)90081-7.
- Crisfield M.A. Non-linear Finite Element Analysis of Solids and Structures: Essentials. New York, John Wiley & Sons, 1991. 362 p.
- Crisfield M.A. A fast incremental/iterative solution procedure that handles “snap-through”. Comput. Struct., 1981, vol. 13, nos. 1–3, pp. 55–62. doi: 10.1016/0045-7949(81)90108-5.
- Kayumov R.A., Lukankin S.A., Paimushin V.N., Kholmogorov S.A. Identification of mechanical properties of fiber-reinforced composites. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2015, vol. 157, no. 4, pp. 112–132. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.