E.D. Izotova∗ , M.A. Rudakova∗∗ , N.I. Akberova∗∗∗
Kazan Federal University, Kazan, 420008 Russia
E-mail: ∗izotova.e.d@gmail.com, ∗∗maychonka@gmail.com, ∗∗∗nakberov@mail.com
Received January 17, 2020
Full text pdf
DOI: 10.26907/2541-7746.2020.1.5-26
For citation: Izotova E.D., Rudakova M.A., Akberova N.I. The molecular dynamics of silica acids in aqueous solution: Qualitative and quantitative characteristics of oligomers. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 1, pp. 5–26. doi: 10.26907/2541-7746.2020.1.5-26. (In Russian)
Abstract
In this work, we studied the diversity of silicic acid oligomers with Sin=(3−8) obtained during molecular dynamics in a reaction Feston–Garofalini force field that describes the process of oligomerization of silicic acids in an aqueous solution at the atomic level. Two systems with different concentrations of silicic acids, including 576 and 729 monomers Si(OH)4 , were studied. According to the calculation results, the highest frequency isomers were represented by linear and branched forms. Throughout the simulation, a high level of dimers was constantly observed. The silicic acids oligomers size increased over time up to 27 Si atoms. The distribution of oligomers by the frequency of permeability for Si n=(3−5) was almost completely comparable with the NMR 29Si and quantum-chemical calculations. A previously undescribed new low-frequency isomer presented in both studied systems was identified among the pentamers. For oligomers with Si n=(6−8) , a wide variety of spatial isomers were observed; some of them have been partially or completely detected experimentally. Analysis of the Si average coordination number during MD simulation showed that 98% of Si atoms have a degree of coordination IV.
Keywords: silicic acids, oligomerization, spatial isomers, molecular dynamics, reaction force field
Figure Captions
Fig. 1. Dynamics of changes in the proportion of silicic acid oligomers with a chain length from Si n=1−8 during 3 ns: a) Si n=1−4 for system45; b) Si n=4−8 for system45; c) Si n=1−4 for system56; d) Si n=4−8 for system56.
Fig. 2. Quantitative distribution of silicon oligomers with chain length Si n=2−27 , during 3 ns MD: a) Si n=2−10 , b) Si n=11−27 . Black color – system45, gray color – system56.
Fig. 3. The twenty most high-frequency graph isomers of silicic acids, for system45 (a) and system56 (b). The proportion of the linear trimmer is taken as 1.
Fig. 4. Trimers of Si n=3 silicic acids: a) the distribution of molecular graphs of silicic acids, b) a stepwise mechanism of a cyclic trimer formation.
Fig. 5. Tetramers of Si n=4 silicic acids: a) the distribution of molecular graphs of silicic acids, b) a stepwise mechanism of a bicyclic tetramer.
Fig. 6. Pentamers of Si n=5 silicic acids: a) the distribution of molecular graphs of silicic acids, b) a stepwise mechanism of formation of Q 1 Q 2 Q 4 (9/10).
Fig. 7. Distribution of molecular graphs of silicic acids hexamers (Si n=6 ): a) system45, b) system56.
Fig. 8. Distribution of molecular graphs of silicic acids heptamers (Si n=7 ): a) system45, b) system56, c) additional structures containing fragments detected by experimental methods [2, 5, 27, 30, 34].
Fig. 9. Distribution of molecular graphs of silicic acids octamers (Si n=8 ): a) system45, b) system56, c) some low-frequency oligomers, fragments of which were detected by the 29Si NMR method [2, 27, 34].
Fig. 10. The coordination number of Si in Si–O compounds and some silicic acid oligomers containing V-coordinated Si.
References
- Marler B., Krysiak Y., Kolb U., Grafweg C., Giesa H. Two new members of the Silica-X family of materials: RUB-5, a silica zeolite with a very high framework density and RUB-6, a hydrous layer silicate. Microporous Mesoporous Mater., 2020, vol. 296, art. 109981, pp. 1–11. doi: 10.1016/j.micromeso.2019.109981.
- Cho H., Felmy A.R., Craciun R., Keenum J.P., Shah N., Dixon D.A. Solution state structure determination of silicate oligomers by 29Si NMR spectroscopy and molecular modeling. J. Am. Chem. Soc., 2006, vol. 128, no. 7, pp. 2324–2335. doi: 10.1021/ja0559202.
- Halasz I., Agarwal M., Li R., Miller N. What can vibrational spectroscopy tell about the structure of dissolved sodium silicates? Microporous Mesoporous Mater., 2010, vol. 135, nos. 1–3, pp. 74–81. doi: 10.1016/j.micromeso.2010.06.013.
- Warring S.L., Beattie D.A., McQuillan A.J. Surficial siloxane-to-silanol interconversion during room-temperature hydration/dehydration of amorphous silica films observed by ATR-IR and TIR-Raman spectroscopy. Langmuir, 2016, vol. 32, no. 6, pp. 1568–1576. doi: 10.1021/acs.langmuir.5b04506.
- Tanaka M., Takahashi K. Determination of the changes of the basic structures of silica species in dependence on the concentration of sodium chloride by FAB-MS. Fresenius’ J. Anal. Chem., 2000, vol. 368, no. 8, pp. 786–790. doi: 10.1007/s002160000600.
- Srivastava D.J., Florian P., Baltisberger J.H., Grandinetti P.J. Correlating geminal 2 JSi–O–Si couplings to structure in framework silicates. Phys. Chem. Chem. Phys., 2018, vol. 20, no. 1, pp. 562–571. doi: 10.1039/C7CP06486A.
- Verstraelen T., Szyja B.M., Lesthaeghe D., Declerck R., Van Speybroeck V., Waroquier M., Jansen A.P.J., Aerts A., Follens L.R.A., Martens J.A., Kirschhock Ch.E.A., van Santen R.A. Multi-level modeling of silica–template interactions during initial stages of zeolite synthesis. Top. Catal., 2009, vol. 52, pp. 1261–1271. doi: 10.1007/s11244-009-9275-4.
- Hirakawa T., Suzuki T., Bowler D.R., Miyazaki T. Canonical-ensemble extended Lagrangian Born–Oppenheimer molecular dynamics for the linear scaling density functional theory. J. Phys.: Condens. Matter, 2017, vol. 29, no. 40, art. 405901, pp. 1–9.
- Stawicka K., Gierada M., Gajewska J., Tielens F., Ziolek M. The importance of residual water for the reactivity of MPTMS with silica on the example of SBA-15. Appl. Surf. Sci., 2020, vol. 513, art. 145802, pp. 1–11. doi: 10.1016/j.apsusc.2020.145802.
- Nagaoka Y., Tan R., Li R., Zhu H., Eggert D., Wu Y. A., Liu Y., Wang Z., Chen O. Superstructures generated from truncated tetrahedral quantum dots. Nature, 2018, vol. 561, pp. 378–382. doi: 10.1038/s41586-018-0512-5.
- Zhmurov A.A., Barsegov V.A. Molekulyarnoe modelirovanie s ispol’zovaniem graficheskikh protsessorov [Molecular Modeling Using Graphic Processing Units]. Moscow, 2013. 152 p. Available at: https://hpc.mipt.ru/zhmurov/files/biomol/lectures.pdf. (In Russian)
- Huff N.T., Demiralp E., Cagin T., Goddard W.A. Factors affecting molecular dynamics simulated vitreous silica structures. J. Non-Cryst. Solids, 1999, vol. 253, nos. 1-3, pp. 133– 142. doi: 10.1016/S0022-3093(99)00349-X.
- Cowenab B.J., El-Genk M.S. Bond-order reactive force fields for molecular dynamics simulations of crystalline silica. Comput. Mater. Sci., 2016, vol. 111, pp. 269–276. doi: 10.1016/j.commatsci.2015.09.042.
- Zhang X., Duan Y., Dai X., Li T., Xia Y., Zheng P., Li H., Jiang Y. Atomistic origin of amorphous-structure-promoted oxidation of silicon. Appl. Surf. Sci., 2020, vol. 504, art. 144437, pp. 1–11. doi: 10.1016/j.apsusc.2019.144437.
- Zhanga L.W., Kaib M.F., Chenc X.H. Si-doped graphene in geopolymer: Its interfacial chemical bonding, structure evolution and ultrastrong reinforcing ability. Cem. Concr. Compos., 2020, vol. 109, art. 103522, pp. 1–12. doi: 10.1016/j.cemconcomp.2020.103522.
- Feuston B.P., Garofalini S.H. Oligomerization in silica sols. J. Phys. Chem., 1990, vol. 94, no. 13, pp. 5351–5356. doi: 10.1021/j100376a035.
- Rao N.Z., Gelb L.D. Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J. Phys. Chem. B, 2004, vol. 108, no. 33, pp. 12418–12428. doi: 10.1021/jp049169f.
- Rimsza J.M., Du J. Nanoporous silica gel structures and evolution from reactive force field-based molecular dynamics simulations. Mater. Degrad., 2018, vol. 2, no. 18. doi: 10.1038/s41529-018-0039-0.
- Shere I., Malani A. Porosity development in silica particles during polymerization: Effect of solvent reactivity and precursor concentration. J. Phys. Chem. C, 2020, vol. 124, no. 1, pp. 520–530. doi: 10.1021/acs.jpcc.9b08844.
- Gordon M.S., Schmidt M.W. Advances in electronic structure theory: GAMESS a decade later. In: Theory and Applications of Computational Chemistry: The First Forty Years, 2005, pp. 1167–1189. doi: 10.1016/B978-044451719-7/50084-6.
- Tarasov D.S., Izotova E.D., Alisheva D.A., Akberova N.I. Gramm-software package for molecular dynamics on graphical processing units. Math. Model. Comput. Simul., 2010, vol. 2, no. 1, pp. 46–54. doi: 10.1134/S2070048210010059.
- Kholmurodov Kh.T., Altaiskii M.V., Puzynin I.V., Darvin T., Filatov F.P. Molecular dynamics methods for simulation of physical and biological processes. Fiz. Elem. Chastits At. Yadra, 2003, vol. 3, no. 2, pp. 474–515. (In Russian)
- Depla A., Lesthaeghe D., Titus S. Van Erp, Aerts A., Houthoofd K., Fan F., Li C., Van Speybroeck V., Waroquier M., Kirschhock C.E.A., Martens J.A. 29Si NMR and UV Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica Sol-Gel chemistry. J. Phys. Chem., 2011, vol. 115, no. 9, pp. 3562–3571. doi: 10.1021/jp109901v.
- Issa A.A., El-Azazy M., Luyt A.S. Polymerization of organoalkoxysilanes: Kinetics of the polycondensation progress and the effect of solvent properties and salts addition. Chem. Phys., 2020, vol. 530, art. 110642, pp. 1–12. doi: 10.1016/j.chemphys.2019.110642.
- Chen Y., Washton N.M., Young R.P., Karkamkar A.J., De Yoreob J.J., Mueller K.T. Monitoring solvent dynamics and ion associations in the formation of cubic octamer polyanion in tetramethylammonium silicate solutions. Phys. Chem. Chem. Phys., 2019, vol. 21, no. 9, pp. 4717–4720. doi: 10.1039/C8CP07521B.
- Zhang X-Q., Trinh T.T., Van Santen R.A., Jansen A.P.J. Structure-directing role of counterions in the initial stage of zeolite synthesis. J. Phys. Chem. C, 2011, vol. 115, no. 19, pp. 9561–9567. doi: 10.1021/jp111911h.
- Knight C.T.G., Thompson A.R., Kunwar A.C., Gutowsky H.S., Oldfield E., Kirkpatrick R.J. Oxygen-17 nuclear magnetic-resonance spectroscopic studies of aqueous alkaline silicate solutions. J. Chem. Soc., Dalton Trans., 1989, no. 2, pp. 275–281. doi: 10.1039/DT9890000275.
- Lazaro A., Vilanova N., Torres L.D.B., Resoort G., Voets I.K., Brouwers H.J.H. Synthesis, polymerization, and assembly of nanosilica particles below the isoelectric point. Langmuir, 2017, vol. 33, no. 51, pp. 14618–14626. doi: 10.1021/acs.langmuir.7b01498.
- Pilgrim C.D., Colla C.A., Ochoa G., Walton J.H., Casey W.H. 29Si NMR of aqueous silicate complexes at gigapascal pressures. Commun. Chem., 2018, vol. 1, art. 67, pp. 1–6. doi: 10.1038/s42004-018-0066-3.
- Borba A., Vareda J.P., Durues L., Portugal A., Simues P.N. Spectroscopic characterization of silica aerogels prepared using several precursors – effect on the formation of molecular clusters. New J. Chem., 2017, vol. 41, no. 14, pp. 6742–6760. doi: 10.1039/C7NJ01082F.
- Pereira J.C.G., Catlow C.R.A., Pereira J.C.,G., Price G.D. Silica condensation reaction: An ab initio study. Chem. Commun., 1998, no. 13, pp. 1387–1388. doi: 10.1039/A801816B.
- Schro¨der H.C., Grebenjuk V.A., Wang X., Mu´ller W.E.G. Hierarchical architecture of sponge spicules: Biocatalytic and structure-directing activity of silicatein proteins as model for bioinspired applications. Bioinspiration Biomimetics, 2016, vol. 11, no. 4, art. 041002, pp. 1–17. doi: 10.1088/1748-3190/11/4/041002.
- Belton D.J., Deschaume O., Perry C.C. An overview of the fundamentals of the chemistry of silica with relevance to biosilification and technological advances. FEBS. J., 2012, vol. 279, no. 10, pp. 1710–1720. doi: 10.1111/j.1742-4658.2012.08531.x.
- Sjˇoberg S. Silica in aqueous environments. J. Non-Cryst. Solids, 1996, vol. 196, pp. 51–57. doi: 10.1016/0022-3093(95)00562-5.
- Catlow C.R.A., Coombes D.S., Lewis D.W., Pereira J.C.G. Computer modeling of nucleation, growth, and templating in hydrothermal synthesis. Chem. Mater., 1998, vol. 10, no. 11, pp. 3249–3265. doi: 10.1021/cm980302o.
- Petitgirard S., Sahle C.J., Weis C., Gilmore K., Spiekermann G., Tse J.S., Wilke M., Cavallari C., Cerantola V., Sternemann C. Magma properties at deep Earth’s conditions from electronic structure of silica. Geochem. Perspect. Lett., 2019, vol. 9, pp. 32–37. doi: 10.7185/geochemlet.1902.
The content is available under the license Creative Commons Attribution 4.0 License.