A.A. Aganin∗, T.F. Khalitova ∗∗
Institute of Mechanics and Engineering, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111 Russia
E-mail: ∗aganin@kfti.knc.ru, ∗∗taliny@mail.ru
Received March 18, 2018
Full text PDF
DOI: 10.26907/2541-7746.2019.1.53-65
For citation: Aganin A.A., Khalitova T.F. Effect of the liquid temperature on strong compression of a cavitation bubble. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 1, pp. 53–65. doi: 10.26907/2541-7746.2019.1.53-65. (In Russian)
Abstract
The influence of the liquid temperature in the range of 273.15–419 K on the vapor compression inside a collapsing cavitation bubble in acetone has been studied. The liquid pressure is 50 bar. The vapor in the bubble is initially in its saturated state, the bubble radius is 500 мm. The fluid flows are governed by the gas dynamic equations with wide-range equations of state, taking into account the heat conductivity and evaporation/condensation on the bubble surface. The numerical technique is based on a TVD-modification of the Godunov method of the second order of accuracy in space and time. Five vapor compression scenarios have been found to sequentially implement with decreasing the liquid temperature. The first scenario is close to homogeneous, the other ones are with the convergence of: one isentropic wave, one shock wave, one isentropic and one shock waves, and two shock waves. At that, the vapor temperature maximum achieved at the boundary of a small central region of the bubble (with a radius less than 2.5 мm) until the first shock wave focusing grows nonmonotonic.
Keywords: acoustic cavitation, bubble collapse, convergent shock waves
Acknowledgments. The study was supported by the Russian Science Foundation (project no. 17-11-01135).
References
1. Lauterborn W., Kurz T. Physics of bubble oscillations. Rep. Prog. Phys., 2010, vol. 73, no. 10, art. 106501, pp. 1–88. doi: 10.1088/0034-4885/73/10/106501 106501.
2. Tomita Y., Shima A. High-speed photographic observations of laser-induced cavitation bubbles in water. Acustica, 1990, vol. 71. no. 3, pp. 161–171.
3. Taleyarkhan R.P., West C.D., Cho J.S., Lahey R.T. Jr., Nigmatulin R.I., Block R.C. Evidence for nuclear emissions during acoustic cavitation. Science, 2002, vol. 295, pp. 1868–1873. doi: 10.1126/science.1067589.
4. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Propagation of pressure perturbations in a porous medium saturated with bubbly liquid. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2015, vol. 157, no. 1, pp. 101–106. (In Russian)
5. Galimov E.M., Kudin A.M., Skorobogatski V.N., Plotnichenko V.G., Bondarev O.L., Zarubin B.G., Strazdovskii V.V., Aronin A.S., Fisenko A.V., Bykov I.V., Barinov A.Yu. Experimental corroboration of the synthesis of diamond in the cavitation process. Dokl. Phys., 2004, vol. 49, no. 3, pp. 150–153. doi: 10.1134/1.1710678.
6. Suslick K.S. Sonochemistry. Science, 1990, vol. 247, pp. 1439–1445. doi: 10.1126/science.247.4949.1439.
7. Baranchikov A.Ye., Ivanov V.K., Tretyakov Yu.D. Sonochemical synthesis of inorganic materials. Russ. Chem. Rev., 2007, vol. 76, no. 2, pp. 133–151. doi: 10.1070/RC2007v076n02ABEH003644.
8. Nigmatulin R.I, Akhatov I.Sh., Topolnikov A.S., Bolotnova R.Kh., Vakhitova N.K., Lahey R.T. (Jr.), Taleyarkhan R.P. The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion. Phys. Fluids, 2005, vol. 17, no. 10, art. 107106, pp. 1–31. doi: 10.1063/1.2104556.
9. Nigmatulin R.I., Aganin A.A., Ilgamov M.A., Toporkov D.Yu. Strong compression of vapor in cavitation bubbles in water and acetone. Vestn. Bashk. Univ., 2017, vol. 22, no. 3, pp. 580–585. (In Russian)
10. Aganin A.A., Ilgamov M.A. Gas-bubble dynamics under excitation by compression and rarefaction pulses in a liquid. Dokl. Phys., 2002, vol. 47, no. 1, pp. 29–33. doi: 10.1134/1.1450657.
11. Aganin A.A., Khalitova T.F. Deformation of a shock wave under strong compression of nonspherical bubbles. High Temp., 2015, vol. 53, no. 6, pp. 877–881. doi: 10.1134/S0018151X15050016.
12. Aganin A.A., Khalitova T.F. Strong medium compression in a spheroidal cavitation bubble. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2015, vol. 157, no. 1, pp. 91–100. (In Russian)
13. Aganin A.A., Ilgamov M.A., Toporkov D.Yu. Dependence of vapor compression inside cavitation bubbles in water and acetone on the pressure of liquid. Vestn. Bashk. Univ., 2015, vol. 20, no. 3, pp. 807–812. (In Russian)
14. Aganin A.A., Ilgamov M.A., Toporkov D.Yu. Dependence of vapor compression in cavitation bubbles in water and benzol on liquid pressure. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2016, vol. 158, no. 2, pp. 231–242. (In Russian)
15. Hilgenfeldt S., Lohse D., Moss W.C. Water temperature dependence of single buble sonoluminescence. Phys. Rev. Lett., 1998, vol. 80, no. 6, pp. 1332–1335.
16. Fuster D., Hauke G., Dopazo C. Parametric analysis for a single collapsing bubble. Flow, Turbul. Combust., 2009, vol. 82, no. 1, pp. 25–46.
17. Nigmatulin R.I., Bolotnova R.Kh. Wide-range equation of state for organic liquids: Acetone as an example. Dokl. Phys., 2007, vol. 52, no. 8, pp. 442–446. doi: 10.1134/S1028335807080095.
18. Aganin A.A., Khalitova T.F., Khismatullina N.A. Computation of a strong compression of a spherical gas bubble in liquid. Comput. Technol., 2008, vol. 13, no. 6, pp. 17–27.
19. Aganin A.A., Khalitova T.F. Liquid temperature dependence of the shock formation in a cavitation bubble. Tr. Inst. Mekh. im. R.R. Mavlyutova Ufim. Nauchn. Tsentra Ross. Akad. Nauk, 2017, vol. 12, no. 1, pp. 89–95. doi: 10.21662/uim2018.1.002.
20. Nigmatulin R.I., Aganin A.A., Toporkov D.Yu., Ilgamov M.A. Formation of convergent shock waves in a bubble upon its collapse. Dokl. Phys., 2014, vol. 59, no. 9, pp. 431–435. doi: 10.1134/S1028335814090109.
The content is available under the license Creative Commons Attribution 4.0 License.