S.R. Romanov a*, K.O. Shibaeva a**, R.R. Minnullin a***, M.P. Shulaeva b****,
O.K. Pozdeev b*****, A.S. Tapalova c******, I.V. Galkina a*******, Yu.V. Bakhtiyarova a********
aKazan Federal University, Kazan, 420008 Russia
bKazan State Medical Academy, Kazan, 420012 Russia
cKorkyt Ata Kyzylorda University, Kyzylorda, 120014 Kazakhstan
E-mail: *semyonromanov@yandex.ru, **shikaol@yandex.ru,
***alkhimik-royal@mail.ru, ****shulaeva.m@mail.ru, *****pozdeevoscar@rambler.ru,
******anipa52@mail.ru, *******vig54@mail.ru, ********Julbakh@mail.ru
Received December 4, 2022; Accepted January 18, 2023
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2023.1.158-169
For citation: Romanov S.R., Shibaeva K.O., Minnullin R.R., Shulaeva M.P., Pozdeev O.K., Tapalova A.S., Galkina I.V., Bakhtiyarova Yu.V. α-Carboxylate phosphabetains in alkylation and complexation reactions. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 158–169. doi: 10.26907/2542-064X.2023.1.158-169. (In Russian)
Abstract
Alkylation reactions of α-carboxylate phosphabetaines were carried out and studied to enhance the biological activity of previously synthesized carboxylate phosphabetaines. As a result of these reactions, the original structure was destroyed with the formation of quaternary salts of phosphonium triiodide. The structure and composition were confirmed by a complex of physical research methods, including NMR, IR spectroscopy, and elemental analysis. The bactericidal and antimycotic activity of the synthesized salts was assessed. The compounds showed activity similar to that of commercial drugs. The reactions of complexation of these structures were also investigated. In the reactions with nickel and copper chloride, complexes were isolated and characterized. The structure of the nickel complex was unambiguously confirmed by the data obtained with the help of single-crystal X-ray diffraction analysis.
Keywords: glyoxylic acid, tertiary phosphine, phosphabetaine, alkylation, methyl iodide, antimicrobial activity
Acknowledgments. This study was supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).
Figure Captions
Fig. 1. Molecular structure of compound 12.
Scheme 1. Synthesis of carboxylate phosphabetaines based on glyoxylic acid.
Scheme 2. Alkylation of monocarboxylate phosphabetaines.
Scheme 3. Alkylation of dicarboxylate phosphabetaines.
Scheme 4. Alkylation of carboxylate betaine 1 under mild conditions.
Scheme 5. Reactions of phosphabetaine complexation 3.
References
- Huang X., Weiss R.G. Silica structures templated on fibers of tetraalkylphosphonium salt gelators in organogels. Langmuir, 2006, vol. 22, no. 20, pp. 8542–8552. doi: 10.1021/la0610250.s001.
- Pomecko R., Asfari Z., HubscherBruder V., Bochenska M., Arnaud Neu F. Anion recognition by phosphonium calix[4]arenes: Synthesis and physico-chemical studies. Supramol. Chem., 2010, vol. 22, no. 5, pp. 275–288. doi: 10.1080/10610270903437051.
- Kanazava A., Ikeda T., Endo T. Synthesis and antimicrobial activity of dimethyl- and trimethyl-substituted phosphonium salts with alkyl chains of various lengths. Antimicrob. Agents Chemother., 1994, vol. 38, no. 5, pp. 945–952. doi: 10.1128/AAC.38.5.945.
- Mollahosseini A., Abdelrasoul A., Shoker A. Latest advances in zwitterionic structures modified dialysis membranes. Mater. Today Chem., 2020, vol. 15, art. 100227. doi: 10.1016/j.mtchem.2019.100227.
- Xu D., We H., Zhen Y., Gao Y.-Q., Li R., Li X., He Y., Zhang Zh., Xie W. Carboxylate phosphabetaine as a bifunctional organocatalyst for the intramolecular ring opening of oxetane. Org. Chem. Front., 2019, vol. 6, pp. 1681–1685. doi: 10.1039/C9QO00304E.
- Zhou H., Wang G.-H., Zhang W.-Zh., Lu X.-B. CO2 adducts of phosphorus ylides: Highly active organocatalysts for carbon dioxide transformation. ACS Catal., 2015, vol. 5, no. 11, pp. 6773–6779. doi: 10.1021/acscatal.5b01409.
- Galkina I., Tufatullin A., Krivolapov D., Bakhtiyarova Yu., Chubukaeva D., Stakheev V., Galkin V., Cherkasov R., Büchner B., Kataeva O. Crystal structure of phosphonium carboxylate complexes. The role of the metal coordination geometry, ligand conformation and hydrogen bonding. CrystEngComm, 2014, vol. 16, no. 38, pp. 9010–9024. doi: 10.1039/c4ce01361a.
- Bakhtiyarova Yu.V., Morozov M.V., Romanov S.R., Minnullin R.R., Shulaeva M.P., Pozdeev O.K., Galkin V.I. New biologically active phosphonium salts based on 3-(diphenylphosphino)propionic acid and unsaturated amides. Russ. Chem. Bull., 2020, vol. 69, no. 8, pp. 1569–1572. doi: 10.1007/s11172-020-2936-y.
- Romanov S.R., Dolgova Y.V., Morozov M.V., Ivshin K.A., Semenov D.A., Bakhtiyarova Yu.V., Galkina I.V., Galkin V.I. New phosphonium salts based on 3-(diphenylphosphino)propanoic and ω-haloalkanoic acids. Mendeleev Commun., 2021, vol. 31, no. 31, pp. 242–243. doi: 10.1016/j.mencom.2021.03.032.
- Romanov S.R., Aksunova A.F., Islamov D.R., Dobrynin A.B., Krivolapov D.B., Kataeva O.N., Bakhtiyarova Yu.V., Galkina I.V., Galkin V.I. Triphenylphosphine in reactions with ω-haloalkylcarboxylic acid. Phosphorus, Sulfur, Silicon Relat. Elem., 2016, vol. 191, nos. 11–12, pp. 1637–1639. doi: 10.1080/10426507.2016.1223661v.
- Galkin V.I., Bakhtiyarova Yu.V., Polezhaeva N.A., Cherkasov R.A., Krivolapov D.B., Gubaidullin A.T., Litvinov I.A. Synthesis, structure and reactivity of carboxylate phosphabetaines. Phosphorus, Sulfur Silicon Relat. Elem., 1999, vol. 147, no. 1, p. 91. doi: 10.1080/10426509908053526.
- Bakhtiyarova Yu.V., Aksunova A.F., Romanov S.R., Bakhtiyarov D.I., Ivshin K.A., Kataeva O.N., Egorova S.N., Galkina I.V., Galkin V.I. The reaction of phosphorylation of trans-aconitic acid by tertiary phosphines. Phosphorus, Sulfur, Silicon Relat. Elem., 2019, vol. 194, nos. 4–6, pp. 319–320. doi: 10.1080/10426507.2018.1539999.
- Riddick J.A., Bunger W.B., Sakano T.K. Organic Solvents: Physical Properties and Methods of Purification. New York, Wiley-Interscience, 1986. 1344 р.
- Armarego W.L.F., Chai C.L.L. Purification of Laboratory Chemicals. Burlington, Butterworth–Heinemann, 2009. 743 p.
- Kormachev V.V., Fedoseev M.S. Preparativnaya khimiya fosfora [Preparative Chemistry of Phosphorus]. Perm, Ural. Otd. Ross. Akad. Nauk, 1992. 458 p. (In Russian)
- Galkina I.V., Romanov S.R., Gerasimov A.V., Bakhtiyarova Yu.V., Galkin V.I. Synthesis of stable carboxylate phosphabetaines – Potential ligands of the metal complexes. J. Organomet. Chem., 2020, vol. 910, art. 121131. doi: 10.1016/j.jorganchem.2020.121131.
- Mazurkiewicz R., Październiok-Holewa A., Grymel M. N-acyl-α-triphenylphosphonio-α-amino acids: Synthesis and decarboxylation to α-(N-acylamino)alkyltriphenylphosphonium salts. Phosphorus, Sulfur, Silicon Relat. Elem., 2009, vol. 184, no. 4, pp. 1017–1027. doi: 10.1016/j.tetlet.2008.01.051.
- Basvani K., Fomina O., Yakhfarov D., Heinicke J. Synthesis and properties of zwitterionic phosphonioglycolates. Polyhedron, 2014, vol. 67, pp. 306–313. doi: 10.1016/j.poly.2013.09.016.
- Davison J.C., Foreman M.R., Howie R.A., Plater M.J., Skakle J.M. A new polymorph, form C, of [1,2-bis(diphenylphosphino)ethane]-dichloronickel(II). Acta Crystallogr., Sect. C: Struct. Chem., 2001, vol. 57, pt. 6, pp. 690–693. doi: 10.1107/s0108270101003961.
The content is available under the license Creative Commons Attribution 4.0 License.