K.G. Giniyatullin a*, I.A. Sahabiev a**, E.V. Smirnova a***, A.A. Valeeva a****, S.S. Ryazanov b*****, L.I. Latypova a******
aKazan Federal University, Kazan, 420008 Russia
bInstitute of Ecology and Subsoil Use, Tatarstan Academy of Sciences, Kazan, 420087 Russia
E-mail: *ginijatullin@mail.ru, **ilnassoil@yandex.ru, ***elenavsmirnova@mail.ru, ****valeyabc@mail.ru, *****erydit@yandex.ru, ******leisana-2009@mail.ru
Received April 5, 2022
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.3.438-456
For citation: Giniyatullin K.G., Sahabiev I.A., Smirnova E.V., Valeeva A.A., Ryazanov S.S., Latypova L.I. Using the reflectance parameters as covariates of the organic matter content in fallow soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 3, pp. 438–456. doi: 10.26907/2542-064X.2022.3.438-456. (In Russian)
Abstract
This article estimates whether the reflectance parameters of air-dried (< 0.25 mm) soil samples in the visible and infrared (IR) spectral regions can be used as a covariate of the soil organic matter content (SOM) in old-arable horizons of fallows. A significant correlation of the SOM content was revealed only with the intensity of the absorption band 1630 cm–1 and the area of the absorption band 1706–1537 cm–1. Low correlations in the IR range were associated with the chemical heterogeneity of the SOM inherited from the arable soil and the newly formed SOM under the fallows. Closer correlations were observed between the SOM and reflectance in the red (R) band of the visible spectrum, the obtained correlation coefficient (r) was –0.76 for the 0–5 cm layer and –0.73 for the 5–10 cm layer. It was shown that the use of reflectance in the R-band for cokriging results in a more accurate spatial prediction of the SOM distribution with a minimal sample compared to ordinary kriging. Improved maps of the SOM content can provide a more realistic prediction of the sequestration of CO2 in fallow soils, as well as its emission from fallows during land-use change.
Keywords: fallow soils, organic matter, spectral characteristics of soils, spatial prediction, cokriging
Acknowledgments. This study was supported by the Russian Science Foundation (project no. 22-24-00242).
Figure Captions
Fig. 1. Sampling scheme. T1 – points at which samples were taken to determine the SOM content and measure the reflectance, T2 – points at which only the reflectance was measured.
Fig. 2. Variograms of the standardized values of the SOM content and the intensity of reflectance in the red band (R) in the upper layers of Ap old.
Fig. 3. Crossvariograms of the SOM content and reflectance in the red band (R) of the RGB color space in the upper layers of Ap old.
References
- Batjes N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci., 1996, vol. 47, no. 3, pp. 151–163. doi: 10.1111/EJSS.12114_2.
- Kudeyarov V.N. Current state of the carbon budget and the capacity of Russian soils for carbon sequestration. Eurasian Soil Sci., 2015, vol. 48, no. 9, pp. 923–933. doi: 10.1134/S1064229315090070.
- Kudeyarov V.N. Soil-biogeochemical aspects of arable farming in the Russian Federation. Eurasian Soil Sci., 2019, vol. 52, no. 1, pp. 94–104. doi: 10.1134/S1064229319010095.
- Kogut B.M., Semenov V.M., Artemyeva Z.S., Danchenko N.N. Humus depletion and soil carbon sequestration. Agrokhimiya, 2021, no. 5, pp. 3–13. doi: 10.31857/S0002188121050070. (In Russian)
- Kalinina O., Goryachkin S., Karavaeva N.A., Lyuri D., Giani L. Dynamics of carbon pools in post-agrogenic sandy soils of southern taiga of Russia. Carbon Balance Manage., 2010, vol. 5, art. 1, pp. 1–9. doi: 10.1186/1750-0680-5-1.
- Kurganova I., Lopes de Gerenyu V., Kuzyakov Y. Largescale carbon sequestration in post-agrogenic ecosystems in Russia and Kazakhstan. Catena, 2015, vol. 133, pp. 461–466. doi: 10.1016/j.catena.2015.06.002.
- Guo L.B., Gifford R.M. Soil carbon stock and land use change: A meta analysis. Global Change Biol., 2002, vol. 8, no. 4, pp. 345–360. doi: 10.1046/j.1354-1013.2002.00486.x.
- Mueller C.W., Koegel-Knabner I. Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol. Fertil. Soils, 2009, vol. 45, pp. 347–359. doi: 10.1007/s00374-008-0336-9.
- Ovsepyan L.A., Kurganova I.N., Lopes de Gerenyu V.O., Rusakov A.V., Kuzyakov Ya.V. Changes in the fractional composition of organic matter in the soils of the forest–steppe zone during their postagrogenic evolution. Eurasian Soil Sci., 2020, vol. 53, no. 1, pp. 50–61. doi: 10.1134/S1064229320010123.
- Sorokina N.P., Kozlov D.N., Kuznetsova I.V. Assessment of the postagrogenic transformation of soddy-podzolic soils: Cartographic and analytic support. Eurasian Soil Sci., 2013, vol. 46, no. 10, pp. 1007–1019. doi: 10.7868/S0032180X13100134.
- Giniyatullin K.G., Ryazanov S.S., Smirnova E.V., Latypova L.I., Ryzhikh L.Yu. Using geostatistical methods for evaluating organic matter reserves in fallow soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 2, pp. 275–292. doi: 10.26907/2542-064X.2019.2.275-292. (In Russian)
- Wadoux A.M.J.-C., Minasny B., McBratney A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev., 2020, vol. 210, art. 103359, pp. 1–17. doi: 10.31223/osf.io/8eq6s.
- Wiesmeier M., Barthold F., Blank B., Kögel-Knabner I. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil, 2011, vol. 340, pp. 7–24. doi: 10.1007/s11104-010-0425-z.
- Martin M.P., Orton T.G., Lacarce E., Meersmans J., Saby N.P.A., Paroissien J.B., Jolivet C., Boulonne L., Arrouays D. Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale. Geoderma, 2014, vol. 223–225, pp. 97–107. doi: 10.1016/j.geoderma.2014.01.005.
- Mahmoudzadeh H., Matinfar H.R., Taghizadeh-Mehrjardi R., Kerry R. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Reg., 2020, art. e00260, pp. 1–16. doi: 10.1016/j.geodrs.2020.e00260.
- Jafari A., Khademi H., Finke P.A., Van de Wauw J., Ayoubi S. Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran. Geoderma, 2014, vol. 232–234, pp. 148–163. doi: 10.1016/j.geoderma.2014.04.029.
- Matinfar H.R., Maghsodi Z., Mousavi S.R., Rahmani A. Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale. Catena, 2021, vol. 202, art. 105258, pp. 1–13. doi:10.1016/j.catena.2021.105258.
- Sahabiev I., Smirnova E., Giniyatullin K. Spatial prediction of agrochemical properties on the scale of a single field using machine learning methods based on remote sensing data. Agronomy, 2021, vol. 11, no. 11, art. 2266, pp. 1–16. doi: 10.3390/agronomy11112266.
- Kerry R., Goovaerts P., Rawlins B.G., Marchante B.P. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma, 2012, vol. 170, pp. 347–358. doi: 10.1111/j.1365-2753.2012.01908.x.
- Dai F., Zhou Q., Lv Z., Wang X., Liu G. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Indic., 2014, vol. 45, pp. 184–194. doi: 10.1016/j.ecolind.2014.04.003.
- Mirzaee S., Ghorbani-Dashtaki S., Mohammadi J., Asadi H., Asadzadeh F. Spatial variability of soil organic matter using remote sensing data. Catena, 2016, vol. 145, pp. 118–127. doi: 10.1016/j.catena.2016.05.023.
- Žížala D., Minarík R., Zádorová T. Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions. Remote Sens., 2019, vol. 1, no. 24, art. 2947, pp. 1–23. doi: 10.3390/rs11242947.
- Chen L., Chunying R., Zhang B., Wang Z. Multi-sensor prediction of stand volume by a hybrid model of support vector machine for regression kriging. Forests, 2020, vol. 11, no. 3, art. 296, pp. 1–18. doi: 10.3390/f11030296.
- Okunev R., Smirnova E., Giniyatullin K. Application of ATR-FTIR spectrometry for express prediction of the organic matter properties of arable leached chernozem. Proc. 20th Int. Multidiscip. Sci. GeoConf. SGEM 2020, 2020, vol. 20, no. 3.1, pp. 381–386. doi: 10.5593/sgem2020/3.1/s13.049.
- Dokuchaev P.M., Meshalkina Yu.L. Determination of the organic carbon content using a portable spectroradiometer. Vestn. Orenb. Gos. Univ., 2016, vol. 10, no. 198, pp. 58–62. (In Russian)
- Bangelesa F., Adam E., Knight J., Dhau I., Ramudzuli M., Mokotjomela T.M. Predicting soil organic carbon content using hyperspectral remote sensing in a degraded mountain landscape in Lesotho. Appl. Environ. Soil Sci., 2020, vol. 2020, art. 2158573, pp. 1–11. doi: 10.1155/2020/2158573.
- Savin I.Y., Vindeker G.V. Some specifics in using optical properties of soil surface for moisture detection. Eurasian Soil Sci., 2021, vol. 54, no. 7, pp. 1019–1027. doi: 10.31857/S0032180X21070121.
- Prudnikova E., Savin I. Some peculiarities of arable soil organic matter detection using optical remote sensing data. Remote Sens., 2021, vol. 13, no. 12, art. 2313, pp. 1–26. doi: 10.3390/rs13122313.
- Orlov D.S., Sukhanova N.I., Rozanova M.S. Spektral’naya otrazhatel’naya sposobnost’ pochv i ikh komponentov [Spectral Reflectance of Soils and Their Components]. Moscow, Izd. Mosk. Univ., 2001. 176 p. (In Russian)
- Karavanova E.I. Opticheskie svoistva pochv i ikh priroda [Optical Properties of Soils and Their Nature]. Moscow, Izd. Mosk. Univ., 2003. 151 p. (In Russian)
- Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 2006, vol. 131, nos. 1–2, pp. 59–75. doi: 10.1016/j.geoderma.2005.03.007.
- Vasques G.M., Grunwald S., Sickman J.O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, 2008, vol. 146, nos. 1–2, pp. 14–25. doi: 10.1016/j.geoderma.2008.04.007.
- Ludwig B., Nitschke R., Terhoeven-Urselmans T., Michel K., Flessa H. Use of midinfrared spectroscopy in the diffuse-reflectance mode for the prediction of the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci., 2008, vol. 171, no. 3, pp. 384–391. doi: 10.1002/jpln.200700022.
- Samsonova V.P., Meshalkina Yu.L., Blagoveshchenskii Yu.N. Effect of errors in positioning the sampling points on the assessment of the relationships between the remote sensing data and the soil properties. Eurasian Soil Sci., 2013, vol. 46, no. 5, pp. 484–490. doi: 10.1134/S1064229313050104.
- Mohamed E.S., Ali A.M., El Shirbeny M.A., Abd A.A, Razek El., Savin I.Y. Near infrared spectroscopy techniques for soil contamination assessment in the Nile Delta. Eurasian Soil Sci., 2016, vol. 49, no. 6, pp. 632–639. doi: 10.7868/S0032180X1606006X.
- Bellon-Maurel V., McBratney A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives. Soil Biol. Biochem., 2011, vol. 43, no. 7, pp. 1398–1410. doi: 10.1016/j.soilbio.2011.02.019.
- Conforti M., Matteucci G., Buttafuoco G. Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties. J. Soils Sediments, 2018, vol. 18, no. 3, pp. 1009–1019. doi: 10.1007/s11368-017-1766-5.
- Masserschmidt I., Cuelbas C.J., Poppi R.J., de Andrade J.C., de Abreu C.A., Davanzo C.U. Determination of organic matter in soils by FTIR/diffuse reflectance and multivariate calibration. J. Chemom., 1999, vol. 13, no. 3, pp. 265–273. doi: 10.1002/(sici)1099-128x(199905/08)13:3/43.0.
- McCarty G.W., Reeves J.B., Reeves V.B., Follett R.F., Kimble J.M. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon management. Soil Sci. Soc. Am. J., 2002, vol. 66, no. 2, pp. 640–646. doi: 10.2136/sssaj2002.6400a.
- McCarty G.W., Reeves J.B. III Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Sci., 2006, vol. 171, no. 2, pp. 94–102. doi: 10.1097/01.ss.0000187377.84391.54.
- Reeves J.B. Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma, 2010, vol. 158, nos. 1–2, pp. 3–14. doi: 10.1016/j.geoderma.2009.04.005.
- Vasenev I.I., Meshalkina Yu.L., Grachev D.A. Geoinformatsionnye sistemy v pochvovedenii i ekologii. Interaktivnyi kurs [Geoinformation Systems in Soil Science and Ecology. An Interactive Course]. Мoscow, RGAU – MSKhA, 2010. 212 p. (In Russian)
- Goovaerts P., Kerry R. Using ancillary data to improve prediction of soil and crop attributes in precision agriculture. In: Oliver M.A. (Ed.) Geostatistical Applications for Precision Agriculture. Dordrecht, Springer, 2010, pp. 167–194. doi: 10.1007/978-90-481-9133-8_7.
- Keskin H., Grunwald S. Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma, 2018, vol. 326, pp. 22–41. doi: 10.1016/j.geoderma.2018.04.004.
- Walvoort D.J.J., Brus D.J., de Gruijter J.J. An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means. Comput. Geosci., 2010, vol. 36, no. 10, pp. 1261–1267. doi: 10.1016/j.cageo.2010.04.005.
- Smith A.L. Applied Infrared Spectroscopy. London, John Wiley & Sons, 1979. 336 p.
- Valeeva A.A., Aleksandrova A.B., Koposov G.F. Color estimation of forest-steppe soils by digital photography under laboratory conditions. Eurasian Soil Sci., 2016, vol. 49, no. 9, pp. 1033–1037. doi: 10.7868/S0032180X16090136.
- R Core Team. R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria, 2021. Available at: http://www.R-project.org/.
- Pebesma E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci., 2004, vol. 30, no. 7, pp. 683–691. doi: 10.1016/j.cageo.2004.03.012.
- Isaaks E.H., Srivastava R.M. An Introduction to Applied Geostatistics. NewYork, Oxford Univ. Press, 1989. 592 p.
- Webster R., Oliver M.A. Sample adequately to estimate variograms of soil properties. J. Soil Sci., 1992, vol. 43, no. 1, pp. 177–192. doi: 10.1111/j.1365-2389.1992.tb00128.x.
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project, 2021. Available at: https://qgis.org/ru/site/.
- Kuznetsova I.V., Tikhonravova P.I., Bondarev A.G. Changes in the properties of cultivated gray forest soils after their abandoning. Eurasian Soil Sci., 2009, vol. 42, no. 9, pp. 1062–1070. doi: 10.1134/S1064229309090142.
- Kurganova I.N., Kudeyarov V.N., De Gereny L. Updated estimate of carbon balance on Russian territory. Tellus, 2010, vol. 62, no. 5, pp. 497–505. doi: 10.1111/j.1600-0889.2010.00467.x.
- Jahn B.R., Upadhyaya S.K. Determination of soil nitrate and organic matter content using portable, filter-based mid-infrared spectroscopy. In: Viscarra Rossel R., McBratney A., Minasny B. (Eds.) Proximal Soil Sensing. Progress in Soil Science. Dordrecht, Springer, 2010, pp. 143–152. doi: 10.1007/978-90-481-8859-8_12.
- Giniyatullin K. G, Smirnova E.V., Ryzhikh L.Yu., Latipova L.I. Spectral characteristics of water-soluble and alkaline-soluble organic substance of fallow light-gray forest soils. IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 315, art. 052021, pp. 1–6. doi: 10.1088/1755-1315/315/5/052021.
- Krotov D.G., Samsonova V.P., Krotova E.A., Lavrinova E.Yu. The relationship between the humus content in the arable horizon of gray forest soil and brightness in the red channel of satellite image. Agrokhim. Vestn., 2017, no. 1, pp. 11–14. (In Russian)
- Cambardella C.A., Moorman T.B., Novak J.M., Parkin T.B., Karlen D.L., Turco R.F., Konopka A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 1994, vol. 58, no. 5, pp. 1501–1511. doi: 10.2136/sssaj1994.03615995005800050033x.
The content is available under the license Creative Commons Attribution 4.0 License.