A.Kh. Valiullina a*, E.A. Zmievskaya a**, A.R. Rakhmatullina a***, M.N. Zhuravleva a****, E.E. Garanina a*****, R.R. Miftakhova a******, A.V. Petukhov b*******, A.A. Rizvanov a********, E.R. Bulatov a*********
aKazan Federal University, Kazan, 420008 Russia
bAlmazov National Medical Research Centre, Ministry of Health of the Russian Federation,
St. Petersburg, 197341 Russia
E-mail: *aigul1692@mail.ru, **ekazmievskaya@gmail.com, ***rahmatullina_2011@mail.ru, ****k.i.t.t.1807@gmail.com, *****kathryn.cherenkova@gmail.com, ******regina.miftakhova@gmail.com, *******alexeysakhalin@gmail.com, ********rizvanov@gmail.com, *********bulatovemil@gmail.com
Received December 4, 2021
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.2.212-230
For citation: Valiullina A.Kh., Zmievskaya E.A., Rakhmatullina A.R., Zhuravleva M.N., Garanina E.E., Miftakhova R.R., Petukhov A.V., Rizvanov A.A., Bulatov E.R. Evaluation of CAR-T cell cytotoxicity against a prostate carcinoma model. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 2, pp. 212–230. doi: 10.26907/2542-064X.2022.2.212-230. (In Russian)
Abstract
In recent years, a new promising application of adoptive cell therapy (ACT) has been enabled by the development of technologies and the successful clinical use of T cells with a chimeric antigen receptor (CAR-T) for treating patients with malignant B-cell neoplasms. In this study, we obtained CAR-T cells with the second-generation chimeric antigen receptor FMC63-28Z-CAR. The effectiveness of the obtained CAR-T cells against the monolayer of the modified PC-3M prostate carcinoma cell line (Kat+CD19+) was evaluated. A correlation was demonstrated between an increased secretion of the proinflammatory cytokines IFNγ, TNFα, IL6 and a decreased confluence of the tumor cells monolayer. At the same time, a pronounced antitumor effect of CAR-T cells was observed starting from day 5 of coincubation. Thus, the proposed approach can potentially be applied for a preliminary evaluation of the effectiveness of biomedical CAR-T cell products in the treatment of solid tumors.
Keywords: CAR-T cells, chimeric antigen receptor, solid tumor, cell model, prostate carcinoma, PC-3M
Acknowledgments. This study was funded by the Russian Science Foundation (project no. 19-74-20026) and supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030). Part of the consumables (laboratory plasticware, interleukin-2) were purchased through a joint grant from the Foundation for Cancer Research Support (RakFond) and the SciStoreLab LLC.
Figure Captions
Fig. 1. Evaluation of the transduction efficiency of T lymphocytes by lentiviral particles. a – dot plot: the population of T cells on the forward and side scatter plot, the population of T cells is highlighted; b – dot plot: the population of GFP-positive T lymphocytes (CAR-T cells); c – dot plot: assessment of the CAR-T cells content by the signal level of biotinylated protein L conjugated with streptavidin-Pacific Blue; d – dot plot: the subpopulations of CD4+ and CD8+ in the total population of CAR-T cells. The upper left quadrant represents the population of CD4+ CAR-T cells, the lower right quadrant represents the population of CD8+ CAR-T cells.
Fig. 2. Evaluation of the transduction efficiency of the PC-3M cell line with lentiviral particles encoding for the red fluorescent protein Katushka2S and CD19 antigen. a – dot plot: the unmodified control line PC-3M; b – dot plot: the level of transduction of PC-3M cells by lentiviral particles encoding for the red fluorescent protein Katushka2S; c – dot plot: the unmodified control line PC-3M; d – dot plot: the level of transduction of PC-3M(Kat+) cells by lentiviral particles encoding for CD19 antigen.
Fig. 3. Evaluation of the CAR-T cells effectiveness against the tumor cell line PC-3M(Kat+CD19+) in the dynamic evaluation of the changes in confluence from days 1 to 7 of co-cultivation. The results are presented as the mean value, the error bars indicate the standard deviation (n = 3, p < 0.05).
Fig. 4. Micrographs of the monolayer of the tumor cell lines PC-3M(Kat+) and PC-3M(Kat+CD19+) co-cultivated with CAR-T cells. Light microscopy, fluorescence microscopy, representative micrographs (n = 6) are shown, scale bar is 100 µm. CAR-T cells – green fluorescence. Tumor cells PC-3M(Kat+) and PC-3M(Kat+CD19+) – red fluorescence.
Fig. 5. Heat map of the levels of expression of IFNγ, IL6, and TNFα in the culture medium during the co-cultivation of CAR-T cells with the tumor cell lines PC-3M(Kat+) and PC-3M(Kat+CD19+) at different time points.
References
- Eshhar Z. The T-body approach: Redirecting T cells with antibody specificity. In: Chernajovsky Y., Nissim A. (Eds.) Handbook of Experimental Pharmacology. Berlin, Heidelberg, Springer, 2008, vol. 181, pp. 329–342. doi: 10.1007/978-3-540-73259-4_14.
- Curran K.J., Pegram H.J., Brentjens R.J. Chimeric antigen receptors for T cell immunotherapy: Current understanding and future directions. J. Gene Med., 2012, vol. 14, no. 6, pp. 405–415. doi: 10.1002/jgm.2604.
- Dai H., Wang Y., Lu X, Han W. Chimeric antigen receptors modified T-cells for cancer therapy. J. Natl. Cancer Inst., 2016, vol. 108, no. 7, art. djv439, pp. 1–14. doi: 10.1093/jnci/djv439.
- Eshhar Z., Waks T., Gross G., Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, no. 2, pp. 720–724. doi: 10.1073/pnas.90.2.720.
- Scheuermann R.H., Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk. Lymphoma, 1995, vol. 18, nos. 5–6, pp. 85–97. doi: 10.3109/10428199509059636.
- Davila M.L., Riviere I., Wang X., Bartido S., Park J., Curran K., Chung S.S., Stefanski J., Borquez-Ojeda O., Olszewska M., Qu J., Wasielewska T., He Q., Fink M., Shinglot H., Youssif M., Satter M., Wang Y., Hosey J., Quintanilla H., Halton E., Bernal Y., Bouhassira D.C., Arcila M.E., Gonen M., Roboz G.J., Maslak P., Douer D., Frattini M.G., Giralt S., Sadelain M., Brentjens R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 2014, vol. 6, no. 224, art. 224ra25, pp. 1–23. doi: 10.1126/scitranslmed.3008226.
- Kochenderfer J.N., Dudley M.E., Kassim S.H., Somerville R.P., Carpenter R.O., Stetler-Stevenson M., Yang J.C., Phan G.Q., Hughes M.S., Sherry R.M., Raffeld M., Feldman S., Lu L., Li Y.F., Ngo L.T., Goy A., Feldman T., Spaner D.E., Wang M.L., Chen C.C., Kranick S.M., Nath A., Nathan D.A., Morton K.E., Toomey M.A., Rosenberg S.A. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol., 2015, vol. 33, no. 6, pp. 540–549. doi: 10.1200/JCO.2014.56.2025.
- Maude S.L., Frey N., Shaw P.A., Aplenc R., Barrett D.M., Bunin N.J., Chew A., Gonzalez V.E., Zheng Z., Lacey S.F., Mahnke Y.D., Melenhorst J.J., Rheingold S.R., Shen A., Teachey D.T., Levine B.L., June C.H., Porter D.L., Grupp S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, vol. 371, no. 16, pp. 1507–1517. doi: 10.1056/NEJMoa1407222.
- Porter D.L., Hwang W.T., Frey N.V., Lacey S.F., Shaw P.A., Loren A.W., Bagg A., Marcucci K.T., Shen A., Gonzalez V., Ambrose D., Grupp S.A., Chew A., Zheng Z., Milone M.C., Levine B.L., Melenhorst J.J., June C.H. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med., 2015, vol. 7, no. 303, art. 303ra139. doi: 10.1126/scitranslmed.aac5415.
- Turtle C.J., Hanafi L.A., Berger C., Gooley T.A., Cherian S., Hudecek M., Sommermeyer D., Melville K., Pender B., Budiarto T.M., Robinson E., Steevens N.N., Chaney C., Soma L., Chen X., Yeung C., Wood B., Li D., Cao J., Heimfeld S., Jensen M.C., Riddell S.R., Maloney D.G. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest., 2016, vol. 126, no. 6, pp. 2123–2138. doi: 10.1172/JCI85309.
- Turtle C.J., Hanafi L.A., Berger C., Hudecek M., Pender B., Robinson E., Hawkins R., Chaney C., Cherian S., Chen X., Soma L., Wood B., Li D., Heimfeld S., Riddell S.R., Maloney D.G. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med., 2016, vol. 8, no. 355, art. 355ra116. doi: 10.1126/scitranslmed.aaf8621.
- Turtle C.J., Riddell S.R., Maloney D.G. CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy for B-cell malignancies. Clin. Pharmacol. Ther., 2016, vol. 100, no. 3, pp. 252–258. doi: 10.1002/cpt.392.
- Lee D.W., Kochenderfer J.N., Stetler-Stevenson M., Cui Y.K., Delbrook C., Feldman S.A., Fry T.J., Orentas R., Sabatino M., Shah N.N., Steinberg S.M., Stroncek D., Tschernia N., Yuan C., Zhang H., Zhang L., Rosenberg S.A., Wayne A.S., Mackall C.L. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet, 2015, vol. 385, no. 9967, pp. 517–528. doi: 10.1016/S0140-6736(14)61403-3.
- Grupp S.A., Maude S.L., Shaw P.A., Aplenc R., Barrett D.M., Callahan C., Lacey S.F., Levine B.L., Melenhorst J.J., Motley L., Rheingold S.R., Teachey D.T., Wood P.A., Porter D., June C.H. Durable remissions in children with relapsed/refractory ALL treated with T cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood, 2015, vol. 126, no. 23, p. 681. doi: 10.1182/blood.V126.23.681.681.
- Buechner J., Grupp S.A., Maude S.L., Boyer M., Bittencourt H., Laetsch T.W., Bader P., Verneris M.R., Stefanski H., Myers G.D., Qayed M., Pulsipher M.A., De Moerloose B., Hiramatsu H., Schlis K., Davis K., Martin P.L., Nemecek E., Peters Ch., Wood P., Taran T., Mueller K.Th., Zhang Y., Rives S. Global registration trial of efficacy and safety of CTL019 in pediatric and young adult patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL): Update to the interim analysis. Clin. Lymphoma, Myeloma Leuk., 2017, vol. 17, suppl. 2, pp. S263–S264. doi: 10.1016/j.clml.2017.07.030.
- Gardner R.A., Finney O., Annesley C., Brakke H., Summers C., Leger K., Bleakley M., Brown C., Mgebroff S., Kelly-Spratt K.S., Hoglund V., Lindgren C., Oron A.P., Li D., Riddell S.R., Park J.R., Jensen M.C. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood, 2017, vol. 129, no. 25, pp. 3322–3331. doi: 10.1182/blood-2017-02-769208.
- Berdeja J.G., Lin Y., Raje N., Munshi N., Siegel D., Liedtke M., Jaqannath S., Maus M.V., Turka A., Lam L.P., Hege K., Morgan R.A., Quigley M.T., Kochenderfer J.N. Durable clinical responses in heavily pretreated patients with relapsed/refractory multiple myeloma: Updated results from a multicenter study of bb2121 anti-BCMA CAR T cell therapy. Blood, 2017, vol. 130, suppl. 1, p. 740. doi: 10.1182/blood.V130.Suppl_1.740.740.
- Zhao J., Lin Q., Song Y., Liu D. Universal CARs, universal T cells, and universal CAR T cells. J. Hematol. Oncol., 2018, vol. 11, art. 132, pp. 1–9. doi: 10.1186/s13045-018-0677-2.
- Mirzaei H.R., Rodriguez A., Shepphird J., Brown C.E., Badie B. Chimeric antigen receptors T cell therapy in solid tumor: Challenges and clinical applications. Front. Immunol., 2017, vol. 8, art. 1850, pp. 1–13. doi: 10.3389/fimmu.2017.01850.
- Yu W.-L., Hua Z.C. Chimeric antigen receptor T-cell (CAR T) therapy for hematologic and solid malignancies: Efficacy and safety – a systematic review with meta-analysis. Cancers (Basel), 2019, vol. 11, no. 1, art. 47, pp. 1–27. doi: 10.3390/cancers11010047.
- Thanindratarn P., Dean D.C., Nelson S.D., Hornicek F.J., Duan Z. Chimeric antigen receptor T (CAR-T) cell immunotherapy for sarcomas: From mechanisms to potential clinical applications. Cancer Treat. Rev., 2020, vol. 82, art. 101934, pp. 1–10. doi: 10.1016/j.ctrv.2019.101934.
- Petukhov A.V., Markova V.A., Motorin D.V., Titov A.K., Belozerova N.S., Gershovich P.M., Karabel’skii A.V., Ivanov R.A., Zaikova E.K., Smirnov E.Yu., Butylin P.A., Zaritskii A.Yu. Manufacturing CD19 specific CAR T cells and evaluating their functional activity in vitro. Klin. Onkogematol., 2018, vol. 11, no. 1, pp. 1–9. doi: 10.21320/2500-2139-2018-11-1-1-9. (In Russian)
- Pan. J., Yang J.F., Deng B.P., Zhao X.J., Zhang X., Lin Y.H., Wu Y.N., Deng Z.L., Zhang Y.L., Liu S.H., Wu T., Lu P.H., Lu D.P., Chang A.H., Tong C.R. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia, 2017, vol. 31, no. 12, pp. 2587–2593. doi: 10.1038/leu.2017.145.
- Blaeschke F., Stenger D., Kaeuferle T., Willier S., Lotfi R., Kaiser A.D., Assenmacher M., Döring M., Feucht J., Feuchtinger T. Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia. Cancer Immunol. Immunother., 2018, vol. 67, no. 7, pp. 1053–1066. doi: 10.1007/s00262-018-2155-7.
- Fan D., Li W., Yang Y., Zhang X., Zhang Q., Yan Y., Yang M., Wang J., Xiong D. Redirection of CD4+ and CD8+ T lymphocytes via an anti-CD3 × anti-CD19 bi-specific antibody combined with cytosine arabinoside and the efficient lysis of patient-derived B-ALL cells. J. Hematol. Oncol., 2015, vol. 8, art. 108, pp. 1–12. doi: 10.1186/s13045-015-0205-6.
- Kenderian S.S., Ruella M., Gill S., Kalos M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer Res., 2014, vol. 74, no. 22, pp. 6383–6389. doi: 10.1158/0008-5472.
- Zhang W., Jordan K.R., Schulte B., Purev E. Characterization of clinical grade CD19 chimeric antigen receptor T cells produced using automated CliniMACS Prodigy system. Drug Des., Dev. Ther., 2018, vol. 12, pp. 3343–3356. doi: 10.2147/DDDT.S175113.
- Hay K.A., Hanafi L.A., Li D., Gust J., Liles W.C., Wurfel M.M., Lopez J.A., Chen J., Chung D., Harju-Baker S., Cherian S., Chen X., Riddell S.R., Maloney D.G., Turtle C.J. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood, 2017, vol. 130, no. 21, pp. 2295–2306. doi: 10.1182/blood-2017-06-793141.
The content is available under the license Creative Commons Attribution 4.0 License.