R.M. Beilinson a*, E.P. Medyantseva a**, E.A. Kirillova a***, E.V. Khaldeeva b****, H.C. Budnikov a*****
aKazan Federal University, Kazan, 420008 Russia
bKazan Research Institute of Epidemiology and Microbiology, Kazan, 420015 Russia
E-mail: *rvarlamo@mail.ru, **emedyant@gmail.com, ***elena.al.kirillova@gmail.com,
****mycology-kazan@yandex.ru, *****Herman.Budnikov@kpfu.ru
Received September 24, 2021
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2022.1.22-35
For citation: Beilinson R.M., Medyantseva E.P., Kirillova E.A., Khaldeeva E.V., Budnikov H.C. Amperometric enzyme immunoassay sensors in determination of Fusarium oxysporum antigens. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 1, pp. 22–35. doi: 10.26907/2542-064X.2022.1.22-35. (In Russian)
Abstract
Enzyme immunoassay sensors (EIS) with L-cysteine desulfhydrase (CDH) as a label based on planar graphite electrodes were created to determine Fusarium oxysporum antigen (Ag). The EIS action relies on the combined effect of immunological, enzymatic, and electrochemical reactions. The immunosensors developed allow the determination of Fusarium oxysporum Ag in the concentration range of 5?10–10 – 5?10–6 mg/mL with the limit of quantification of 1?10–10 mg/mL. The binding constant of the Ab-Ag immune complexes was estimated as Ка1 = (6.2 ? 0.2)?109 (mg/mL)–1. No cross-reaction with Ag of such pathogenic fungi as Alternaria alternata, Cladosporium herbarum, Aspergillus fumigatus, and Aspergillus niger was confirmed. Here the quality of wheat groats was assessed to test the methods for the determination of Fusarium oxysporum Ag using the developed CDH immunosensor.
Keywords: Fusarium oxysporum, enzyme immunoassay sensor, L-cysteine desulfhydrase, fungal pathogens
Figure Captions
Fig. 1. Schematic representation of the action of enzyme immunoassay sensors based on immobilized Ab against Fusarium oxysporum Ag and the enzyme (E) includes: co-immobilized enzyme and Ab (a), Ag in solution (b), immune complex that is formed and variants of the substrate access to the active enzyme surface (c).
Fig. 2. Voltammograms of the electrooxidation of a 1?10–3 M cysteine solution in phosphate buffer (pH 7.6) (1), in the presence of L-cysteine desulfhydrase (2), in the absence of L-cysteine desulfhydrase (4), in the presence of Fusarium oxysporum Ag and L-cysteine desulfhydrase (3) at the planar graphite electrode.
Fig. 3. Scatchard plot for determining the binding constant of the Ab-Ag immune complex of Fusarium oxysporum.
References
- Senes C.E.R., Saldan N.C., Costa W.F., Svidzinski T., Oliveira C.C. Identification of Fusarium oxysporum fungus in wheat based on chemical markers and qualitative GC-MS test. J. Braz. Chem. Soc., 2018, vol. 29, no. 12, pp. 2626–2635. doi: 10.21577/0103-5053.20180143.
- Graça M.G., Heijden I.M., Perdigão L., Taira C., Costa S.F., Levin A.S. Evaluation of two methods for direct detection of Fusarium spp. in water. J. Microbiol. Methods, 2016, vol. 123, pp. 39–43. doi: 10.1016/j.mimet.2016.01.015.
- Singh N., Kapoor R. Quick and accurate detection of Fusarium oxysporum f. sp. carthami in host tissue and soil using conventional and real-time PCR assay. World J. Microbiol. Biotechnol., 2018, vol. 34, no. 175, pp. 175–187. doi: 10.1007/s11274-018-2556-y.
- Omori A.M. Ono E.Y.S., Bordini J.G., Hirozawa M.T., Fungaro M.H.P., Ono M.A. Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene. Food Microbiol., 2018, vol. 73, pp. 160–167. doi: 10.1016/j.fm.2018.01.020.
- Ge B., Wang B., Guo C., Sun S., Chen G., Wang X., Zhu Z., Duan C. Composition and quantitative analysis of Fusarium species in maize rhizosphere soil. Sci. Agric. Sin., 2018, vol. 51, no. 19, pp. 3683–3693.
- Mishra R.K., Pandey B.K., Muthukumar M., Pathak N., Zeeshan M. Detection of Fusarium wilt pathogens of Psidium guajava L. in soil using culture independent PCR (ciPCR). Saudi J. Biol. Sci., 2013, vol. 20, no. 1, pp. 51–56. doi: 10.1016/j.sjbs.2012.10.007.
- Crespo-Sempere A., Estiarte N., Marín S., Sanchis V., Ramos A.J. Propidium monoazide combined with real-time quantitative PCR to quantify viable Alternaria spp. contamination in tomato products. Int. J. Food Microbiol., 2013, vol. 165, no. 3, pp. 214–220. doi: 10.1016/j.ijfoodmicro.2013.05.017.
- Kumar S., Singh R., Kashyap P.L., Srivastava A.K. Rapid detection and quantification of Alternaria solani in tomato. Sci. Hortic., 2013, vol. 151, pp. 184–189. doi: 10.1016/j.scienta.2012.12.026.
- von Hertwig A.M., Sant'Ana A.S., Sartori D., Silva J., Nascimento M.S., Iamanaka B.T., Pelegrinelli Fungaro M.H., Taniwaki M.H. Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee. J. Microbiol. Methods, 2018, vol. 148, pp. 87–92. doi: 10.1016/j.mimet.2018.03.010.
- Nikitin M., Deych K., Grevtseva I., Girsova N.V., Kuznetsova M., Pridannikov M., Dzhavakhiya V., Statsyuk N., Golikov A.G. Preserved microarrays for simultaneous detection and identification of six fungal potato pathogens with the use of real-time PCR in matrix format. Biosensors, 2018, vol. 8, no. 4, pp. 129–137. doi: 10.3390/bios8040129.
- De la Lastra E., Basallote-Ureba M.J., De los Santos B., Miranda L., Vela-Delgado M.D., Capote N. A TaqMan real-time polymerase chain reaction assay for accurate detection and quantification of Fusarium solani in strawberry plants and soil. Sci. Hortic., 2018, vol. 237, pp. 128–134. doi: 10.1016/j.scienta.2018.04.007.
- Shan L., Haseeb H.A., Zhang J., Zhang D. Jeffers D.P., Dai X., Guo W. A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of toxigenic Fusarium temperatum in maize stalks and kernels. Int. J. Food Microbiol., 2019, vol. 291, pp. 72–78. doi: 10.1016/j.ijfoodmicro.2018.11.021.
- Lan C., Ruan H., Yang X., Yao J. Jiang J. Development of a loop-mediated isothermal amplification assay for sensitive and specific detection of Fusarium oxysporum f. sp. cucumerinum Owen. Phytoparasitica, 2018, vol. 46, pp. 283–293. doi: 10.1007/s12600-018-0669-3.
- Pu J., Xie Y., Zhang H., Zhang X., Qi Y., Peng J. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium mangiferae associated with mango malformation. Physiol. Mol. Plant Pathol., 2014, vol. 86, pp. 81–88. doi: 10.1016/j.pmpp.2014.04.002.
- Denschlag C., Rieder J., Vogel R.F., Niessen L. Real-time loop-mediated isothermal amplification (LAMP) assay for group specific detection of important trichothecene producing Fusarium species in wheat. Int. J. Food Microbiol., 2014, vol. 177, pp. 117–127. doi: 10.1016/j.ijfoodmicro.2014.02.010.
- Jaillais B., Roumet P., Pinson-Gadais L., Bertrand D. Detection of Fusarium head blight contamination in wheat kernels by multivariate imaging. Food Control, 2015, vol. 54, pp. 250–258. doi: 10.1016/j.foodcont.2015.01.048.
- Kaya-Celiker H., Mallikarjunan P.K., Kaaya A. Mid-infrared spectroscopy for discrimination and classification of Aspergillus spp. contamination in peanuts. Food Control, 2015, vol. 52, pp. 103–111. doi: 10.1016/j.foodcont.2014.12.013.
- Liang P.-S., Slaughter D.C., Ortega-Beltran A., Michailides T.J. Detection of fungal infection in almond kernels using near-infrared reflectance spectroscopy. Biosyst. Eng., 2015, vol. 137, pp. 64–72. doi: 10.1016/j.biosystemseng.2015.07.010.
- Pan T., Sun D.-W., Pu H., Wei Q., Xiao W., Wang Q.-J. Detection of A. alternata from pear juice using surface-enhanced Raman spectroscopy based silver nanodots array. J. Food Eng., 2017, vol. 215, pp. 147–155. doi: 10.1016/j.jfoodeng.2017.07.019.
- Shen F., Zhao T., Jiang X., Liu X., Fang Y., Liu Q., Hu Q., Liu X. On-line detection of toxigenic fungal infection in wheat by visible/near infrared spectroscopy. J. Food Sci. Technol., 2019, vol. 109, pp. 216–224. doi: 10.1016/j.lwt.2019.04.019.
- Shen F., Wu Q., Liu P., Jiang X., Fang Y., Cao C. Detection of Aspergillus spp. contamination levels in peanuts by near infrared spectroscopy and electronic nose. Food Control, 2018, vol. 93, pp. 1–8. doi: 10.1016/j.foodcont.2018.05.039.
- Tamburini E., Mamolini E., De Bastiani M., Marchetti M.G. Quantitative determination of Fusarium proliferatum concentration in intact garlic cloves using near-infrared spectroscopy. Sensors, 2016, vol. 16, no. 7, pp. 1099–1112. doi: 10.3390/s16071099.
- Wu Q., Xie L., Xu H. Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques. Food Chem., 2018, vol. 252, pp. 228–242. doi: 10.1016/j.foodchem.2018.01.076.
- Saldan N.C. Almeida R.T.R., Avíncola A., Porto C., Galuch M.B., Magon T.F.S., Pilau E.J., Svidzinski T.I.E., Oliveira C.C. Development of an analytical method for identification of Aspergillus flavus based on chemical markers using HPLC-MS. Food Chem., 2018, vol. 241, pp. 113–121. doi: 10.1016/j.foodchem.2017.08.065.
- Gu S., Wang J., Wang Y. Early discrimination and growth tracking of Aspergillus spp. contamination in rice kernels using electronic nose. Food Chem., 2019, vol. 292, pp. 325–335. doi: 10.1016/j.foodchem.2019.04.054.
- Erler A., Riebe D., Beitz T., Löhmannsröben H.-G., Grothusheitkamp D., Kunz T., Methner F.-J. Detection of volatile organic compounds in the headspace above mold fungi by GC‐soft X‐radiation–based APCI‐MS. J. Mass Spectrom., 2018, vol. 53, no. 10, pp. 911–920. doi: 10.1002/jms.4210.
- Siddiquee S., Rovina K., Yusof N.A., Rodrigues K.F., Suryani S. Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens. Bio-Sens. Res., 2014, vol. 2, pp. 16–22. doi: 10.1016/j.sbsr.2014.06.002.
- Peltomaa R., Vaghini S., Patiño B., Benito-Peña E., Moreno-Bondi M. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples. Anal. Chim. Acta, 2016, vol. 935, pp. 231–238. doi: 10.1016/j.aca.2016.06.009.
- Cecchini F., Manzano M., Mandabi Y., Perelman E., Marks R.S. Chemiluminescent DNA optical fibre sensor for Brettanomyces bruxellensis detection. J. Biotechnol., 2012, vol. 157, no. 1, pp. 25–30. doi: 10.1016/j.jbiotec.2011.10.004.
- Wee E.J.H., Lau H.Y., Botella J.R., Trau M. Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chem. Commun., 2015, vol. 51, no. 27, pp. 5828–5831. doi: 10.1039/C4CC10068A.
- Zhan F., Wang T., Iradukunda L., Zhan J. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Anal. Chim. Acta, 2018, vol. 1036, pp. 153–161. doi: 10.1016/j.aca.2018.06.083.
- Miranda B.S., Linares E.M., Thalhammer S., Kubota L.T. Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust. Biosens. Bioelectron., 2013, vol. 45, pp. 123–128. doi: 10.1016/j.bios.2013.01.048.
- Medyantseva E.P., Khaldeeva E.V., Glushko N.I., Budnikov H.C. Amperometric enzyme immunosensor for the determination of the antigen of the pathogenic fungi Trichophyton rubrum. Anal. Chim. Acta, 2000, vol. 411, nos. 1–2, pp. 13–18.
- Kavand А., Anton N., Vandamme T., Serra C.A., Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J. Controlled Release, 2020, vol. 321, pp. 285–311. doi: 10.1016/j.jconrel.2020.02.019.
- Medyantseva E.P., Kremleva N.V., Budnikov H.C., Bormotova Y.I. Amperometric biosensor for lead and cadmium determination. J. Anal. Chem., 1999, vol. 54, no. 2, pp. 151–154.
- Yoshida K. Elektrookislenie v organicheskoi khimii. Rol' kation radikalov kak intermediatov v sinteze [Electrooxidation in Organic Chemistry. The Role of Cation Radicals as Synthetic Intermediates]. Moscow, Mir, 1987. 336 p. (In Russian)
- Egorov A.M. Teoriya i praktika immunofermentnogo analiza [Theory and Practice of Enzyme Immunoassay]. Moscow, Vyssh. Shk., 1991. 288 p. (In Russian)
- Musil Ya., Novakova O., Kunts K. Sovremennaya biokhimiya v skhemakh [Modern Biochemistry in Schemes]. Moscow, Mir, 1994. 44 p. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.