D.N. Miftakhutdinova a*, R.V. Kutygin b**
aKazan Federal University, Kazan, 420008 Russia
bDiamond and Precious Metal Geology Institute, Siberian Branch,
Russian Academy of Sciences, Yakutsk, 677000 Russia
E-mail: *dinara.miftakhutdinova@gmail.com, **rkutygin@mail.ru
Received June 24, 2021
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2021.3.351-370
For citation: Miftakhutdinova D.N., Kutygin R.V. Ichnofossils of the Permian-Triassic sediments in the Southern Verkhoyansk Region (Tiryakh-Kobyume section, Republic of Sakha (Yakutia), Russia). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 3, pp. 351–370. doi: 10.26907/2542-064X.2021.3.351-370. (In Russian)
Abstract
The paper presents the first detailed evidence for the Permian and Early Triassic ichnofossils of the Southern Verkhoyansk Region. The possibility of using ichnofossils for reconstruction of terrigenous sedimentation at high latitudes, including environments related to the events of the great Permian mass extinction, was discussed. The results obtained are based on ichnofacial and ichnotextural analyses of about 600 samples collected in 2019 from the Tiryakh-Kobyuma section. We found that the Permian and Triassic sediments of the studied section contain numerous icnofossils attributed to 11 ichnogenera. Four ichnoassemblages were identified. They were referred to two ichnofacies – Zoophycos and Skolithos. The Zoophycos ichnofacies includes two ichnoassemblages: Helmintopsis – Phycosiphon – Zoophycos and the depleted Helmintopsis – Phycosiphon ichnoassemblages. This ichnofacies is confined to well-sorted substrates formed in calm temperately deep-water shelf environments, below the level of storm waves, with reduced oxygen content. The Skolithos ichnofacies includes two ichnoassemblages: Arenicolites – Skolithos and Diplocraterion – Arenicolites. It is characteristic of coastal environments with active hydrodynamics and large inputs of clastic and organic matter. The ichnofacies alternate across the section, reflecting sedimentological changing during the accumulation. The sediments of the lower part of the Nekuchan Formation, corresponding to the Permian mass extinction event, accumulated in calm conditions of a relatively deep shelf. This interval is characterized by the Zoophycos ichnofacies with a depleted Helmintopsis – Phycosiphon ichnoassemblage. The depletion of ichnoassemblage and absence of benthic fossils in this part of the section may be caused by anoxic conditions at the basin bottom. The reconstruction of the Permian and Early Triassic environments agrees well with the results of previous studies based on sedimentological and biofacies data.
Keywords: Permian-Triassic boundary, terminal Permian, Induan Stage, ichnofossils, Southern Verkhoyansk Region
Acknowledgements. The work was supported by the subsidy allocated to Kazan Federal University for state assignment no. 671-2020-0049 in the sphere of scientific activities. Stratigraphic study was performed as part of the state assignment to Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences (project no. 0381-2019-0002).
Figure Captions
Fig. 1. Location of the Tiryakh-Kobyume section: a) overview map; b) location of the studied section; 1 – location of the Tiryakh-Kobyume section, 2 – boundaries of the Verkhoyansk fold-thrust belt.
Fig. 2. Geological map of the Tiryakh-Kobyume section. Formations: 1 – Kobyume (Roadian and Wordian Stages), 2 – Tiryakh (Capitanian Stage), 3 – Lugovaya (Capitanian Stage), 4 – Privol’nyj (Wuchiapingian and Changhsingian Stages), 5 – Nekuchan (Changhsingian and Induan Stages), 6 – Olenekian Stage, 7 – Anisian Stage, 8 – Ladinian Stage, 9 – Upper Triassic, 10 – Lower Jurassic, 11 – Middle Jurassic, 12 – Quaternary sediments, 13 – tectonic faults, 14 – Tiryakh-Kobume section.
Fig. 3. Ichnofossils distribution and bioturbation in the Tiryakh-Kobyume section: 1 – coarse-grained sandstones; 2 – fine-grained sandstones; 3 – coarse-grained siltstones; 4 – fine-grained siltstones; 5 – mudstones; 6 – carbonate-argillaceous and carbonaceous-siliceous concretions; 7 – diamictites; 8 – glendonites; 9 – ammonoids; 10 – bivalves; 11 – gastropods; 12 – conchostracans; 13 – crinoids; 14 – corals; 15 – brachiopods; 16 – ichnofossils; Nk – Nekuchan Formation; f/g – fine-grained; m/g – medium-grained; c/g – coarse-grained.
Fig. 4. Ichnofossils of the Tiryakh-Kobyume section: a) Siltstone with Arenicolites isp. exit traces, sample PM 324, bed 33, Privol’nyj Fm; b) sandstone with Diplocraterion parallelum, sample PM 308, bed 37, Nekuchan Fm; c) siltstone with Nereites isp., sample PM 88, bed 85, Lugovaya Fm; d) siltstone bedding surface with Skolithos isp. exit traces, sample PM 323, bed 33, Privol’nyj Fm; e) siltstone with horizontal Palaeophycus isp. burrows, sample PM 214, bed 10, Privol’nyj Fm; f) Zoophycos isp. cone-shaped burrows, sample PM 90, bed 85, Lugovaya Fm.
Fig. 5. Ichnofossils in the polished slabs: a) cross-section of siltstone with Chondrites isp. burrows, sample GKh 141, bed 74, Tiryakh Fm; b) cross-section of siltstone with Cosmorhaphe isp. burrows, sample GKh 348, bed 34, Nekuchan Fm; c) cross-section of the siltstone with Helminthopsis isp. burrows, sample GKh 348, bed 34, Nekuchan Fm; d) cross-section of siltstone with Phycosiphon incertum traces, sample GKh 238, bed 23, Privol’nyj Fm.
Fig. 6. Fragment of the Helminthorhaphe burrow in siltstone (a) and its reconstruction (b). Gray fill – full relief, dotted line – negative epirelief. Sample PM 24, bed 24A, Tiryakh Fm.
References
- Wignall P.B., Twitchett R.J. Permian-Triassic sedimentology of Jameson Land, East Greenland: Incised submarine channels in an anoxic basin. J. Geol. Soc., 2002, vol. 159, no. 6, pp. 691–703. doi: 10.1144/0016-764900-120.
- Wignall P.B., Morante R., Newton R. The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geol. Mag., 1998, vol. 135, no. 1, pp. 47–62. doi: 10.1017/S0016756897008121.
- Uchman A., Hanken N.M., Nielsen J.K., Grundvåg S.A., Piasecki S. Depositional environment, ichnological features and oxygenation of Permian to earliest Triassic marine sediments in central Spitsbergen, Svalbard. Polar Res., 2016, vol. 35, pp. 1–21. doi: 10.3402/polar.v35.24782.
- Miller M.F., Collinson J.W. Trace fossils from Permian and Triassic sandy braided stream deposits, central Transantarctic Mountains. Palaios, 1994, vol. 9, no. 6, pp. 605–610. doi: 10.2307/3515131.
- Hofmann R. The end-Permian mass extinction. In: Mangano M.G., Buatois L.A. (Eds.) The Trace-Fossil Record of Major Evolutionary Events. Vol. 1: Precambrian and Paleozoic. Dordrecht, Springer, 2016, pp. 325–349. doi: 10.1007/978-94-017-9600-2_7.
- Luo M., Shi G.R., Buatois L.A., Chen Z.-Q. Trace fossils as proxy for biotic recovery after the end-Permian mass extinction: A critical review. Earth-Sci. Rev., 2019, vol. 203, art. 103059, pp. 1–15. doi: 10.1016/j.earscirev.2019.103059.
- Abramov B.S. Stratigrafiya verkhnepaleozoiskikh otlozhenii Yuzhnogo Verkhoyan’ya [Stratigraphy of the Upper Paleozoic Sediments in the South Verkhoyansk Region]. Novosibirsk, Nauka, 1974. 96 p. (In Russian)
- Twitchett R.J., Wignall P.B. Trace fossils and the aftermath of the Permo-Triassic mass extinction: Evidence from northern Italy. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1996, vol. 124, nos. 1–2, pp. 137–151. doi: 10.1016/0031-0182(96)00008-9.
- Twitchett R.J. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1999, vol. 154, nos. 1–2, pp. 27–37. doi: 10.1016/S0031-0182(99)00085-1.
- Pruss S.B., Bottjer D.J. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios, 2004, vol. 19, no. 6, pp. 551–564. doi: 10.1669/0883-1351(2004)019<0551:ETTFOT>2.0.CO;2.
- Fraiser M.L., Bottjer D.J. Opportunistic behaviour of invertebrate marine tracemakers during the Early Triassic aftermath of the end-Permian mass extinction. Aust. J. Earth Sci., 2009, vol. 56, no. 6, pp. 841–857. doi: 10.1080/08120090903002656.
- Knaust D. The end-Permian mass extinction and its aftermath on an equatorial carbonate platform: Insights from ichnology. Terra Nova, 2010, vol. 22, no. 3, pp. 195–202. doi: 10.1111/j.1365-3121.2010.00934.x.
- Chen Z.Q., Tong J., Fraiser M.L. Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, South China. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2011, vol. 299, nos. 3–4, pp. 449–474. doi: 10.1016/j.palaeo.2010.11.023.
- Chen Z.Q., Benton M.J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 2012, vol. 5, no. 6, pp. 375–383. doi: 10.1038/ngeo1475.
- Hofmann R., Goudemand N., Wasmer M., Bucher H., Hautmann M. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2011, vol. 310, nos. 3–4, pp. 216–226. doi: 10.1016/j.palaeo.2011.07.014.
- Hofmann R., Buatois L.A., MacNaughton R.B., Mángano M.G. Loss of the sedimentary mixed layer as a result of the end-Permian extinction. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, vol. 428, pp. 1–11. doi: 10.1016/j.palaeo.2015.03.036.
- Budnikov I.V., Grinenko V.S., Klets A.G., Kutygin R.V., Sivchikov V.E. A model of the Upper Paleozoic formation in the east of the Siberian Platform and its folding (patterns of sedimentation, zonation, and correlation). Otechestvennaya Geol., 2003, no. 6, pp. 86–92. (In Russian)
- Budnikov I.V., Kutygin R.V., Shi G.R., Sivtchikov V.E., Krivenko O.V. Permian stratigraphy and paleogeography of Central Siberia (Angaraland) – A review. J. Asian Earth Sci., 2020, vol. 196, art. 104365, pp. 1–21. doi: 10.1016/j.jseaes.2020.104365.
- Biakov A.S. Structural–facies zoning of the Northeast Asia in the Permian. Vestn. SVNTs DVO RAN, 2010, no. 2, pp. 2–7. (In Russian)
- Abramov B.S., Grigor’eva A.D. Biostratigrafiya i brakhiopody permi Verkhoyan’ya [Biostratigraphy and Brachiopods of the Permian in the Verkhoyansk Region]. Moscow, Nauka, 1988. 204 p. (In Russian)
- Kutygin R.V. Main stratigraphic and paleogeographic features of the Lower Dulgalakhian regional substage of the Permian system of Yakutia. Prir. Resur. Arkt. Subarkt., 2018, no. 3, pp. 5–21. doi: 10.31242/2618-9712-2018-25-3-5-21. (In Russian)
- Kutygin R.V., Budnikov I.V., Biakov A.S., Davydov V.I., Kilyasov A.N., Silantiev V.V. First findings of Otoceras (Ceratitida) in the Kobyuma zone of the Southern Verkhoyansk region, Northeastern Russia. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 4, pp. 550–570. doi: 10.26907/2542-064X.2019.4.550-570. (In Russian)
- Seilacher A. Biogenic sedimentary structures. In: Imbrie J., Newell N. (Eds.) Approaches to Paleoecology. New York, Wiley, 1964, pp. 296–316.
- Seilacher A. Bathymetry of trace fossils. Mar. Geol., 1967, vol. 5, nos. 5–6, pp. 413–428. doi: 10.1016/0025-3227(67)90051-5.
- Droser M.D., Bottjer D.J. A semiquantitative field classification of ichnofabric. J. Sediment. Petrol., 1986, vol. 56, no. 4, pp. 556–559. doi: 10.1306/212F89C2-2B24-11D7-8648000102C1865D.
- Mikuláš R., Dronov A. Paleoikhnologiya – vvedenie v izuchenie iskopaemykh sledov zhiznedeyatelnosti [Palaeoichnology – Introduction to the Study of Trace Fossils]. Prague, Geol. Inst. Akad. Nauk Cheshskoi Resp., 2006. 122 p. (In Russian)
- Knaust D. Atlas of Trace Fossils in Well Core: Appearance, Taxonomy and Interpretation. Cham, Switzerland, Springer, 2017. xv, 209 p. doi: 10.1007/978-3-319-49837-9.
- Mckann T., Pickerill R.K. Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. J. Paleontol., 1998, vol. 62, no. 3, pp. 330–347. doi: 10.1017/S0022336000059138.
- Ksiażkiewicz M. Trace fossils in the Flysch of the Polish Carpathians. In: Palaeontologia Polonica. Warszawa, Kraków, Państwowe Wydawn. Naukowe, 1977, no. 36, pp. 1–208.
- Seilacher A. Pattern analysis of Paleodictyon and related trace fossils. In: Crimes T.P., Harper J.C. (Eds.) Trace Fossils 2: Geological Journal Special Issue, 1977, vol. 9, pp. 289–334.
- Wetzel A, Bromley R.G. Phycosiphon incertum revisited: Anconichnus horizontalis is its junior subjective synonym. J. Paleontol., 1994, vol. 68, no. 6, pp. 1396–1402. doi: 10.1017/S0022336000034363.
- Seilacher A. Studien zur Palichnologie. I. Über die Methoden der Palichnologie. Neues Jahrb. Geol. Palaeontol., Abh., 1953, vol. 96, pp. 421–452. (In Russian)
- Seilacher A. Trace Fossil Analysis. Berlin, Heidelberg, Springer, 2007. XIII, 226 p. doi: 10.1007/978-3-540-47226-1.
- Ekdale A.A., Mason T.R. Characteristic trace-fossil associations in oxygen-poor sedimentary environments. Geology, 1998, vol. 16, no. 8, pp. 720–723. doi: 10.1130/0091-7613(1988)016<0720:CTFAIO>2.3.CO;2.
- Biakov A.S., Zakharov Yu.D., Horacek M., Richoz S., Kutygin R.V., Ivanov Yu.Yu., Kolesov E.V., Konstantinov A.G., Tuchkova M.I., Mikhalitsyna T.I. New data on the structure and age of the terminal Permian strata in the South Verkhoyansk Region (Northeastern Asia). Russ. Geol. Geophys., 2016, vol. 57, no. 2, pp. 282–293. doi: 10.1016/j.rgg.2016.02.005.
- Yan P.A., Vakulenko L.G. Change in the composition of ichnofossils in the Callovian-Oxfordian deposits of the West Siberian basin as a reflection of the cyclicity of sedimentogenesis. Geol. Geofiz., 2011, vol. 52, no. 10, pp. 1517–1537. (In Russian)
- Buatois L.A., Mángano M.G. Ichnology. Organism-Substrate Interaction in Space and Time. Cambridge, Cambridge Univ. Press, 2011. 366 p. doi: 10.1017/CBO9780511975622.

The content is available under the license Creative Commons Attribution 4.0 License.