G.S. Galieva a*, P.A. Kuryntseva a**, P.Yu. Galitskaya a***, M.Sh. Tagirov b****, S.Yu. Selivanovskaya a*****
aKazan Federal University, Kazan, 420008 Russia
bTatar Scientific Research Institute of Agriculture, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420059 Russia
E-mail: *goolnaz@rambler.ru, **polinazwerewa@yandex.ru, ***gpolina33@yandex.ru, ****tatniva@mail.ru, *****svetlana.selivanovskaya@kpfu.ru
Received October 23, 2020
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2021.2.221-237
For citation: Galieva G.S., Kuryntseva P.A., Galitskaya P.Yu., Tagirov M.Sh., Selivanovskaya S.Yu. Influence of chiken manure biochar on microorganisms and plants. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 2, pp. 221–237. doi: 10.26907/2542-064X.2021.2.221-237. (In Russian)
Abstract
The effect of chicken manure biochar at different temperatures was analyzed. The biochar was introduced at a dose of 1% (w/w) into the soil used to grow wheat and barley plants under laboratory conditions.
It was revealed that an increase in the pyrolysis temperatures from 300 °С to 700 °С resulted in a 15 times larger specific surface area of the biochar samples (B300 and B700) and reduced the nitrogen content by 1.4 times. Following the addition of the biochar samples into the soil, the Pmobile level became significantly higher: by 9.5 and 11.5 times, for B300 and B700 respectively. The contents of Ntotal and Kmobile increased less significantly: by 1.6 times on average. At the same time, the abundance of fungal and bacterial communities remained unchanged based on the study of bacterial 16S and fungal 18S rRNA genes. Their respiration and metabolic activity rates, as determined by the Biolog Ecoplate method, did not statistically differ by the end of the experiment. The analysis of plant samples showed that barely was more sensitive to the biochar than wheat. B700 produced the maximum effect on barley and also stimulated its biomass growth. Apparently, the effects produced by the biochars under study diverge due to their different surface areas: the addition of the biochar with the larger specific surface area into the soil enhanced its water-retaining capacity and is, therefore, advantageous for plants.
Keywords: biochar, grain crops, microbial communities of soils, respiration activity, Biolog EcoPlate
Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 18-29-25054).
Figure Captions
Fig. 1. Organic carbon (a), total nitrogen (b), mobile potassium (c), and mobile phosphorus (d) contents in the soil samples taken from under the wheat and barley plants and treated with the studied biochar types.
Fig. 2. Number of bacterial 16S rRNA (a) and fungal 18S rRNA (b) gene copies in the soil samples taken from under the wheat and barley plants and treated with the studied biochar types.
Fig. 3. Respiration activity of the microbial community in the soil samples taken from under the wheat and barley plants and treated with the studied biochar types.
Fig. 4. Metabolic activity of the microbial community in the soil samples taken from under the wheat and barley plants and treated with the studied biochar types.
Fig. 5. Effect of the addition of the studied biochar types into the soil on the features of wheat and barley plants.
References
- Stepanova L.P., Tsyganok E.N., Tikhoikina I.M. Environmental problems of agriculture. Vestn. Agrar. Nauki, 2012, vol. 1, no. 12, pp. 11–18. (In Russian)
- Wang H., Xu J., Liu X., Zhang D., Li L., Li W., Sheng L. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res., 2019, vol. 195, no. 3, art. 104382, pp. 1–9. doi: 10.1016/j.still.2019.104382.
- Song D., Xi X., Huang S., Liang G., Sun J., Zhou W., Wang X. Short-term responses of soil respiration and C-cycle enzyme activities to additions of biochar and urea in a calcareous soil. PLoS ONE, 2016, vol. 11, no. 9, art. e0161694, pp. 1–18. doi: 10.1371/journal.pone.0161694.
- Hassan M., Liu Y., Naidu R., Parikh S.J., Du J., Qi F., Willett I.R. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total Environ., 2020, vol. 744, art. 140714, pp. 1–15. doi: 10.1016/j.scitotenv.2020.140714.
- Mohan D., Pittman C.U., Steele P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels, 2006, vol. 20, no. 3, pp. 848–889. doi: 10.1021/ef0502397.
- Weber K., Quicker P. Properties of biochar. Fuel, 2018, vol. 217, pp. 240–261. doi: 10.1021/ef0502397.
- Akhtar S.S., Li G., Andersen M.N., Liu F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manage., 2014, vol. 138, pp. 37–44. doi: 10.1016/j.agwat.2014.02.016.
- Tian J., Wang J., Dippold M., Gao Y., Blagodatskaya E., Kuzyakov Y. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci. Total Environ., 2016, vol. 556, pp. 89–97. doi: 10.1016/j.scitotenv.2016.03.010.
- Qambrani N.A., Rahman M.M., Won S., Shim S., Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable Sustainable Energy Rev., 2017, vol. 79. pp. 255–273. doi: 10.1016/j.rser.2017.05.057.
- Lehmann J., Kuzyakov Y., Pan G., Ok Y.S. Biochars and the plant-soil interface. Plant Soil, 2015, vol. 395, pp. 1–5. doi: 10.1007/s11104-015-2658-3.
- Yuan J.-H., Xu R.-K., Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol., 2011, vol. 102, no. 3, pp. 3488–3497. doi: 10.1016/j.biortech.2010.11.018.
- Dai Z., Zhang X., Tang C., Muhammad N., Wu J., Brookes P.C., Xu J. Potential role of biochars in decreasing soil acidification – A critical review. Sci. Total Environ., 2017, vols. 581–582, pp. 601–611. doi: 10.1016/j.scitotenv.2016.12.169.
- Haefele S.M., Konboon Y., Wongboon W., Amarante S., Maarifat A.A., Pfeiffer E.M., Knoblauch C. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res., 2011, vol. 121, no. 3, pp. 430–440. doi: 10.1016/j.fcr.2011.01.014.
- Wardle D.A., Nilsson M.C., Zackrisson O. Fire-derived charcoal causes loss of forest humus. Science, 2008, vol. 320, no. 5876, p. 629. doi: 10.1126/science.1154960.
- Jiang L., Han G., Lan Y., Liu S., Gao J., Yang X., Meng J., Chen W. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates. J. Integr. Agric., 2017, vol. 16, no. 3, pp. 713–724. doi: 10.1016/S2095-3119(16)61338-2.
- State Standard 17.4.4.02-84. Nature protection. Soils. Methods for sampling and preparation of soil for chemical, bacteriological, and helminthological analysis. Moscow, 1984. 9 p. (In Russian)
- Roth P.J., Lehndorff E., Brodowski S., Bornemann L., Sanchez-García L., Gustafsson Ö., Amelung W. Differentiation of charcoal, soot and diagenetic carbon in soil: Method comparison and perspectives. Org. Geochem., 2012, vol. 46, pp. 66–75. doi: 10.1016/j.orggeochem.2012.01.012.
- State Standart R ISO 27085-2012. Animal feeding stuffs. Determination of calcium, sodium, phosphorus, magnesium, potassium, iron, zinc, copper, manganese, cobalt, molybdenum, arsenic, lead and cadmium by ICP-AES. Moscow, 2012. Available at: http://docs.cntd.ru/document/1200098799. (In Russian)
- Lima I.M., Marshall W.E. Pyrolytic products from poultry manure. Patent no. US 7 794 601 B1, 2010.
- ISO 14240-1:1997. Soil quality – Determination of soil microbial biomass – Part 1: Substrate-induced respiration method. Available at: https://www.iso.org/standard/21530.html.
- Rutgers M., Wouterse M., Drost S.M., Breure A.M., Mulder C., Stone D., Creamer R.E., Winding A., Bloem J. Monitoring soil bacteria with community-level physiological profiles using BiologTM ECO-plates in the Netherlands and Europe. Appl. Soil Ecol., 2016, vol. 97, pp. 23–35. doi: 10.1016/j.apsoil.2015.06.007.
- Smits T.H., Devenoges C., Szynalski K., Maillard J., Holliger C. Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. J. Microbiol. Methods, 2004, vol. 57, no 3, pp. 369–378. doi: 10.1016/j.mimet.2004.02.003.
- Maza-Márquez P., Vílchez-Vargas R., González-Martínez A., González-López J., Rodelas B. Assessing the abundance of fungal populations in a full-scale membrane bioreactor (MBR) treating urban wastewater by using quantitative PCR (qPCR). J. Environ. Manage., 2018, vol. 223, pp. 1–8. doi: 10.1016/j.jenvman.2018.05.093.
- Park J.W., Krumins V., Kjellerup B.V., Fennell D.E., Rodenburg L.A., Sowers K.R., Kerkhof L.J., Häggblom M.M. The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms. Appl. Microbiol. Biotechnol., 2011, vol. 89, no. 6, pp. 2005–2017. doi: 10.1007/s00253-010-2958-8.
- Cerovic Z.G., Masdoumier G., Ghozlen N.B., Latouche G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant., 2012, vol. 146, no. 3, pp. 251–260. doi: 10.1111/j.1399-3054.2012.01639.x.
- Yandell B.S. Practical Data Analysis for Designed Experiments. London, Chapman & Hall, 1997. 440 p.
- Kidin V.V., Troshin S.P. Agrokhimiya [Agrochemistry]. Moscow, Prospekt, 2016. 608 p. (In Russian)
- Liang H., Chen L., Liu G., Zheng H. Surface morphology properties of biochars produced from different feedstocks. Proc. 2016 Int. Conf. on Civil, Transportation and Environment. Atlantis Press, 2016, pp. 1205–1208. doi: 10.2991/iccte-16.2016.210.
- Cely P., Gascó G., Paz-Ferreiro J., Méndez A. Agronomic properties of biochars from different manure wastes. J. Anal. Appl. Pyrolysis, 2015, vol. 111, pp. 173–182. doi: 10.1016/j.jaap.2014.11.014.
- Wang D., Jiang P., Zhang H., Yuan W. Biochar production and applications in agro and forestry systems: A review. Sci. Total Environ., 2020, vol. 723, art. 137775, pp. 1–14. doi: 10.1016/j.scitotenv.2020.137775.
- Xu L., Yao Q., Zhang Y., Fu Y. Integrated production of aromatic amines and N-doped carbon from lignin via ex situ catalytic fast pyrolysis in the presence of ammonia over zeolites. ACS Sustainable Chem. Eng., 2017, vol. 5, no. 4, pp. 2960–2969. doi: 10.1021/acssuschemeng.6b02542.
- Song W., Guo M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis, 2012, vol. 94, pp. 138–145. doi: 10.1016/j.jaap.2011.11.018.
- Pariyar P., Kumari K., Jain M.K., Jadhao P.S. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ., 2020, vol. 713, art. 136433, pp. 1–16. doi: 10.1016/j.scitotenv.2019.136433.
- Méndez A., Terradillos M., Gascó G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrolysis, 2013, vol. 102, pp. 124–130. doi: 10.1016/j.jaap.2013.03.006.
- Biederman L.A., Harpole W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 2013, vol. 5, no. 2, pp. 202–214. doi: 10.1111/gcbb.12037.
- Selivanovskaya S.Yu. Activity and structure of microbial communities of soils treated with unconventional amendments. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2009, vol. 151, no. 1, pp. 115–132. (In Russian)
- Zhelezova A.D., Kutovaya O.V., Dmitrenko V.N., Thakahova A.K., Hohlov S.F. Еstimatiоn оf DNA quаntity in diffеrеnt grоuрs оf microorganisms within gеnetic hоrizоns оf the dаrk-grау sоil. Byull. Pochv. Inst. im. V. V. Dokuchaeva, 2015, no. 78, pp. 87–98. doi: 10.19047/0136-1694-2015-78-87-98. (In Russian)
- Gao L., Wang R., Shen G., Zhang J., Meng G., Zhang J. Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. J. Soil Sci. Plant Nutr., 2017, vol. 17, no. 4, pp. 884–896. doi: 10.4067/S0718-95162017000400004.
- Ke G.-R., Lai C.-M., Liu Y.-Y., Yang S.-S. Inoculation of food waste with the thermo-tolerant lipolytic actinomycete Thermoactinomyces vulgaris A31 and maturity evaluation of the compost. Bioresour. Technol., 2010, vol. 101, no. 19, pp. 7424–7431. doi: 10.1016/j.biortech.2010.04.051.
- Jones D.L., Murphy D.V., Khalid M., Ahmad W., Edwards-Jones G., DeLuca T.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem., 2011, vol. 43, no. 8, pp. 1723–1731. doi: 10.1016/j.soilbio.2011.04.018.
- Wahbi A., Sinclair T.R. Simulation analysis of relative yield advantage of barley and wheat in an eastern Mediterranean climate. Field Crops Res., 2005, vol. 91, nos. 2–3, pp. 287–296. doi: 10.1016/j.fcr.2004.07.020.
The content is available under the license Creative Commons Attribution 4.0 License.