E.V. Polyakova*, Y.G. Kutinov**, A.L. Mineev***, Z.B. Chistova****, T.Ya. Belenovich*****
N.P. Laverov Federal Center for Integrated Arctic Research, Ural Branch,
Russian Academy of Sciences, Arkhangelsk, 163000 Russia
E-mail: *lenpo26@yandex.ru, **kutinov@fciarctic.ru, ***mineew.al@gmail.com, ****zchistova@yandex.ru, *****belenovichtya@yandex.ru
Received April 21, 2021
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2021.2.302-319
For citation: Polyakova E.V., Kutinov Y.G., Mineev A.L., Chistova Z.B., Belenovich T.Ya. Using the ASTER GDEM v.2 global digital elevation model to identify areas of possible activation of karst processes in the Arkhangelsk region (Russia). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 2, pp. 302–319. doi: 10.26907/2542-064X.2021.2.302-319. (In Russian)
Abstract
The possibility of applying the method of detecting drainless depressions, which is used in hydrological correction of the digital elevation model, to identify areas of probable activation of the karst processes in the territory of the Arkhangelsk region was considered. This approach is especially relevant for northern forested territories subjected to continuously increasing anthropogenic activity. Errors (depressions) eliminated by the hydrological correction procedure are not always false. They can be natural landforms, especially in karst areas. Hydrological correction of the digital elevation model of the Arkhangelsk region (based on ASTER GDEM v.2) was performed. A vector layer of depressions in the region was obtained. The density of drainless depressions per unit area was calculated. The resulting map showing the density of drainless depressions was compared with the distribution of karst rocks in the Arkhangelsk region. It was found that the areas of maximum open karst development are associated with a low density of drainless depressions. The highest density of drainless depressions occurs in the territory with carbonate-covered and buried karst.
Keywords: digital elevation model, hydrological correction, drainless depression, karst rocks
Acknowledgements. This research was performed as part of the state assignment no. АААА-А18-118012390305-7 for N.P. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences and supported by the Russian Foundation for Basic Research (project no. 18-05-60024).
Figure Captions
Fig. 1. Distribution of the karst rocks along the territory of the Arkhangelsk region: 1 – karst development band, 2 – geological age of the rocks: AR – Archaean, AR-PR – Archaean-Proterozoic, PR – Proterozoic, С2 – Middle Carboniferous, С2-С3 – Middle-Upper Carboniferous, Р1 – Lower Permian, Р2 – Upper Permian, Т – Triassic, J – Jurassic.
Fig. 2. Illustration of how the method in Wang L. и Liu H. [16] works on the real terrain surface: a – initial DEM of the Arkhangelsk region, b – terrain fragment with the imposed “mask” of depressions (purple color), c – fragment of the terrain with depressions before correction, d – fragment of the terrain with filled depressions after correction.
Fig. 3. Fill-up depth values of the depressions, m (a) and vectorized mask of the depressions with distant water bodies (b).
Fig. 4. Subdivision of the Arkhangelsk region territory into 10×10 km squares for calculation of centroids (a) and density of the drainless depressions, number/100 km2 (b).
Fig. 5. Topology of the depressions on the DEM by [27], authors’ translation.
Fig. 6. Density of the drainless depressions and distribution of the karst rocks along the territory of the Arkhangelsk region: 1 – zones of association: I – right bank, II – left bank of the Northern Dvina River.
Fig. 7. Relationship between the sources of anthropogenic impact and the density of drainless depressions: 1 – zones of intensive industrial impact; 2 – mining zones; 3 – zone of launch site impact; 4 – zones of spent rocket stage falloff; 5 – public and federal roads; 6-13 – deposits: 6 – diamonds; 7 – bauxites; 8 – gypsum; 9 – limestones; 10 – ragstones; 11 – clays; 12 – fresh groundwaters; 13 – mineral groundwaters; 14 – TPP; 15 – large diesel power plants.
Fig. 8. Density of the drainless depressions and distribution of the karst rocks along the territory of the Arkhangelsk region: 1 – zones that differ in the density of drainless depressions: I – right bank, II – left bank of the Northern Dvina River.
References
- Kosheleva T.M. The problem of using karst landscapes when placing solid waste landfills in the Nizhny Novgorod region. Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2009, vol. 11, no. 1, pp. 219–222. (In Russian)
- Opasnye ekzogennye protesessy [Dangerous Exogenous Processes]. Osipov V.I. (Ed.). Moscow, GEOS, 1999. 290 p. (In Russian)
- Polyakova E.V., Kutinov Yu.G., Mineev A.L., Chistova Z.B. Digital elevation modeling for estimating the probability of erosion processes in the northern regions of Russia. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, no. 1, pp. 95–104. doi: 10.21046/2070-7401-2019-16-1-95-104. (In Russian)
- Shavrina E.V. Modern development of underground and surface karst in the southeast of the White Sea-Kuloi plateau. Vopr. Geogr., 2018, no. 147, pp. 88–106. (In Russian)
- Polyakova E.V. Geomorphometric approach in geoecological studies of the northern territories of Russia. Usp. Sovrem. Estestvozn., 2018, no. 3, pp. 117–122. doi: 10.17513/use.36712. (In Russian)
- Carvalho Júnior O.A de., Guimarães R.F., Montgomery D.R., Gillespie A.R., Gomes R.A.T., Martins É.d.S., Silva N.C. Karst depression detection using ASTER, ALOS/PRISM and SRTM-Derived digital elevation models in the Bambuí Group, Brazil. Remote Sens., 2014, vol. 6, pp. 330–351. doi: 10.3390/rs6010330.
- Tokarev S.V. On the method of karst and geomorphological mapping with the help of satellite data on the Earth’s relief. Uch. Zap. Tavricheskogo Natl. Univ. im. V.I. Vernadskogo. Ser. “Geogr.”, 2011, vol. 24, no. 3, pp. 185–193. (In Russian)
- Shavrina E.V., Malkov V.N., Gurkalo E.I. Karst development and distribution in the Arkhangelsk region. Geomorfologiya, 2007, no. 2, pp. 90–101. (In Russian)
- Puchnina L.V., Goryachkin S.V., Rykov A.M., Glazov M.V. Struktura i dinamika prirodnykh komponentov Pinezhskogo zapovednika (Severnaya taiga ETR, Arkhangel’skaya oblast’): bioraznoobrazie i georaznoobrazie v karstovykh oblastyakh [Structure and Dynamics of Natural Components of the Pinega Nature Reserve (Northern Taiga of European Russia, Arkhangelsk Region): Biodiversity and Geodiversity in Karst Regions]. Puchnina L.V., Goryachkin S.V., Rykov A.M., Glazov M.V. (Eds.). Arkhangelsk, SOLTI, 2000. 267 p. (In Russian)
- Kutinov Yu.G., Chistova Z.B., Polyakova E.V., Mineev A.L. Primenenie tsifrovykh modelei rel’efa (TsMR) dlya vydeleniya tektonicheskikh struktur drevnikh platform (na primere severo-zapada Russkoi plity) [The Use of Digital Elevation Models (DEM) to Identify Tectonic Structures of Ancient Platforms (Based on the Northwest of the Russian Plate)]. Penza, Sotsiosfera, 2020. 378 p. (In Russian)
- Mineev A.L., Kutinov Yu.G., Chistova Z.B., Polyakova E.V. Making a digital elevation model to study exogenous processes in the northern territories of the Russian Federation. Prostranstvo Vremya, 2015, no. 3, pp. 278–291. (In Russian)
- Mineev A.L., Polyakova E.V., Kutinov Yu.G., Chistova Z.B. Methodical aspects of creating a digital elevation model of the Arkhangelsk region based on ASTER GDEM V. 2. Sovrem. Probl. Nauki Obraz., 2015, no. 2. Available at: www.science-education.ru/129-21949. (In Russian)
- Kutinov Yu.G., Mineev A.L., Polyakova E.V., Chistova Z.B. Vybor bazovoi tsifrovoi modeli rel’efa (TsMR) ravninnykh territorii Severa Evrazii i ee podgotovka dlya geologicheskogo raionirovaniya (na primere Arkhangel’skoi oblasti) [Choosing the Basic Digital Elevation Model (DEM) of the Plain Territories of Northern Eurasia and Adjusting It for Geological Zoning (Based on the Arkhangelsk Region)]. Penza, Sotsiosfera, 2019. 176 p. (In Russian)
- Mineev A.L., Polyakova E.V., Kutinov Yu.G., Chistova Z.B. The reliability of a digital elevation model of the Arkhangelsk region for geoecological research. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2018, vol. 15, no. 4, pp. 58–67. doi: 10.21046/2070-7401-2018-15-4-58-67. (In Russian)
- Mark D.M. Automatic detection of drainage networks from digital elevation models. Cartographica, 1984, vol. 21, pp. 168–178. doi: 10.3138/10LM-4435-6310-251R.
- Wang L., Liu H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modeling. Int. J. Geogr. Inf. Sci., 2006, vol. 20, no. 2, pp. 193–213. doi: 10.1080/13658810500433453.
- Lindsay J.B., Creed I.F. Sensitivity of digital landscapes to artifact depressions in remotely-sensed DEMs. Photogramm. Eng. Remote Sens., 2005, vol. 71, no. 9, pp. 1029–1036. doi: 10.14358/PERS.71.9.1029.
- Oksanen J., Sarjakoski T. Error propagation analysis of DEM-based drainage basin delineation. Int. J. Remote Sens., 2005, vol. 26, no. 14, pp. 3085–3102. doi: 10.1080/01431160500057947.
- Fisher P., Tate N. Causes and consequences of error in digital elevation models. Prog. Phys. Geogr., 2006, vol. 30, no. 4, pp. 467–489. doi: 10.1191/0309133306pp492ra.
- Grimaldi S., Nardi F., Di Benedetto F., Instanbulluoglu E., Bras R.L. A physically based method for removing pits in digital elevation models. Adv. Water Resour., 2007, vol. 30, no. 10, pp. 2115–2158. doi: 10.1016/j.advwatres.2006.11.016.
- Arnold N. A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values. Prog. Phys. Geogr., 2010, vol. 34, no. 6, pp. 781–809. doi: 10.1177/0309133310384542.
- Pan F., Stieglitz M., Mckane R. An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation. Water Resour. Res., 2012, vol. 48, no. 6, art. W00L10, pp. 1–13. doi: 10.1029/2011WR010735.
- Fernandeza A., Adamowskib J., Petroselli A. Analysis of the behavior of three digital elevation model correction methods on critical natural scenarios. J. Hydrol.: Reg. Stud., 2016, vol. 8, pp. 304–315. doi: 10.1016/j.ejrh.2016.09.009.
- Enyedi P., Pap M., Kovács Z., Takács-Szilágyi L., Szabó S. Efficiency of local minima and GLM techniques in sinkhole extraction from a LiDAR-based terrain model. Int. J. Digital Earth, 2019, vol. 12, no. 9, pp. 1067–1082. doi: 10.1080/17538947.2018.1501107.
- Garbrecht J., Martz L.W. Digital elevation model issues in water resources modeling. In: Hydrologic and Hydraulic Modeling Support with Geographic Information Systems, 2000. Available at: https://proceedings.esri.com/library/userconf/proc99/proceed/papers/pap866/p866.htm.
- Mackay D.S., Band L.E. Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography. Water Resour. Res., 1998, vol. 34, no. 4, pp. 897–901. doi: 10.1029/98WR00094.
- Lindsay J.B. Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models. Hydrol. Processes, 2016, vol. 30, no. 6, pp. 846–857. doi: 10.1002/hyp.10648.
- Pardo-Iguzquiza E., Pulido-Bosch A., Lopez-Chicano M., Duran J.J. Morphometric analysis of karst depressions on a Mediterranean karst massif. Geografiz. Ann.: Ser. A, Phys. Geogr., 2016, vol. 98, pp. 247–263. doi: 10.1111/geoa.12135.
- Hofierka J., Gallay M., Bandura P., Šašak J. Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis. Geomorphology, 2018, vol. 308, pp. 265–277. doi: 10.1016/j.geomorph.2018.02.004.
- Zumpano V., Pisano L., Parise M. An integrated framework to identify and analyze karst sinkholes, Geomorphology, 2019, vol. 332, pp. 213–225. doi: 10.1016/j.geomorph.2019.02.013.
- Klimchuk A.B., Amelichev G.N., Naumenko V.G., Tokarev S.V. Estimating the epikarst zone thickness by the distribution of craters’ depths. Speleol. Karstol., 2009, no. 3, pp. 26–38. (In Russian)
- Polyakova E.V., Kutinov Yu.G., Mineev A.L., Chistova Z.B. Analysis of the possibility of using digital elevation models ASTER GDEM v2 and ArcticDEM to study of the Arctic territories of Russia. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2020, vol. 17, no. 7, pp. 117–127. doi: 10.21046/2070-7401-2020-17-7-117-127. (In Russian)
- Polyakova E., Gofarov M., Kutinov Yu., Beljaev V., Chistova Z., Neverov N., Staritsyn V., Mineev A., Durynin S. Erosion processes in karst landscapes of the Russian plain northern taiga, based on digital elevation modeling. J. Mt. Sci., 2016, vol. 13, no. 4, pp. 569–580. doi: 10.1007/s11629-015-3642-3.
- Chikishev A.G. Karst Russkoi ravniny [Karst of the Russian Plain]. Moscow, Nauka, 1978. 192 p. (In Russian)
- Polyakova E.V., Kutinov Yu.G., Mineev A.L., Chistova Z.B. Geoecological assessment of the probability of activation of karst processes based on digital elevation modeling. Analiz, prognoz i upravlenie prirodnymi riskami s uchetom global’nogo izmeneniya klimata “GEORISK – 2018”: Materialy X Mezhdunar. nauch.-prakt. konf. [Analysis, Forecast, and Management of Natural Risks in the Face of Global Climate Change “GEORISK – 2018”: Proc. X Int. Sci.-Pract. Conf.]. Vol. 2. Moscow, RUDN, 2018, pp. 221–225. (In Russian)
- Torsuev N.P., Levin S.A. Geograficheskie aspekty izucheniya ravninnogo karsta [Geographical Aspects of Studying Plain Karst]. Kazan, Izd. Kazan. Univ., 1980. 208 p. (In Russian)
- Neverov N.A., Belyaev V.V., Chistova Z.B., Kutinov Y.G., Staritsyn V.V., Polyakova E.V., Mineev A.L. Effects of geo-ecological conditions on larch wood variations in the North European part of Russia (Arkhangelsk region). J. For. Sci., 2017, vol. 63, no. 4, pp. 192–197. doi: 10.17221/102/2015-JFS.
- Gubaidullin M.G. Geoekologicheskie usloviya osvoeniya mineral’no-syr’evykh resursov Evropeiskogo Severa Rossii [Geoecological Conditions for the Development of Mineral Resources in the European North of Russia]. Arkhangelsk, Pomor. Gosuniv., 2002. 310 p. (In Russian)
- Polyakova E.V. Accounting the geomorphometric parameters of the relief when conducting economic activities on the territory of the Arkhangelsk region. Evraziiskii Soyuz Uch., 2019, no. 3-2, pp. 33–37. doi: 10.31618/ESU.2413-9335.2019.2.60.33-37 (In Russian)
- Polyakova E.V., Kutinov Yu.G., Mineev A.L., Chistova Z.B. Using geomorphometric analysis of the relief in the implementation of economic activities in the territory of the Arkhangelsk region. Geoekol.. Inzhenernaya Geol.. Gidrogeol.. Geokriol., 2021, no. 2, pp. 86–95. doi: 10.31857/S0869780921020065. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.