L.R. Biktasheva*, S.Y. Selivanovskaya**, P.Y. Galitskaya***
Kazan Federal University, Kazan, 420008 Russia
E-mail: *biktasheval@mail.ru, **svetlana.selivanovskaya@kpfu.ru, ***gpolina33@yandex.ru
Received May 21, 2020
DOI: 10.26907/2542-064X.2020.4.573-591
For citation: Biktasheva L.R., Selivanovskaya S.Y., Galitskaya P.Y. Changes in the structure of the fungal soil community induced by contamination with high oil contents under the laboratory conditions. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 4, pp. 573–591. doi: 10.26907/2542-064X.2020.4.573-591. (In Russian)
Abstract
Changes in the fungal communities of three oil-contaminated soil samples (D, S, and C) with different contents of organic carbon (0.8%, 1.9%, and 4.5%) were investigated. All samples were contaminated with oil at a concentration of 120 g kg–1 and incubated for 120 days. The addition of oil to the soil induced an approximately two-fold decrease in the abundance of fungi with its subsequent restoration up to the baseline level in samples S and C. In sample D, however, it remained low throughout the experiment. With the help of the Illumina MiSeq high-throughput sequencing, it was revealed that the fungal communities of the oil-contaminated samples S and C were least resistant to the oil contamination (the first changes were registered on the third day of incubation) as compared to sample D that suffered the first structural changes on the 30th day of the experiment. After 120 days of the incubation, selective dominance of the following fungi was recorded: sample D – the genus Fusarium (34%) and the family Clavicipitaceae (20%); sample S – the genus Fusarium (82%); sample C – the genera Fusarium (56%) and Mortierella (21%). The results of the NMDS analysis demonstrate that the communities of all oil-contaminated samples were reliably different from the communities of control soils since the 30th day of the experiment. Notably, the differences observed intensified with time.
Keywords: oil-contaminated soils, fungal community, sequencing
Acknowledgments. The study was supported by the Russian Science Foundation (project no. 17-74-20183).
Figure Captions
Fig. 1. Concentration of hydrocarbons.
Fig. 2. Abundance of fungi in soil samples D, S, and C throughout the experiment. Mean values and standard error (SE) of the mean are given.
Fig. 3. Structural dynamics of the fungal communities depending on the fungal type.
Fig. 4. Structural dynamics of the fungal communities depending on the major taxonomic units: a – sample D, b – sample S, c – sample С.
Fig. 5. β-diversity of the fungal communities in the soil samples studied during the experiment.
References
1. Ramadass K., Megharaj M., Venkateswarlu K., Naidu R. Ecological implications of motor oil pollution: Earthworm survival and soil health. Soil Biol. Biochem., 2015, vol. 85, pp. 72–81.
2. Wang H., Kuang S., Lang Q., Yu W. Effects of aged oil sludge on soil physicochemical properties and fungal diversity revealed by high-throughput sequencing analysis. Archaea, 2018, vol. 2018, art. 9264259, pp. 1–8. doi: 10.1155/2018/9264259.
3. Ayoubi S., Khormali F., Sahrawat K.L., de Lima A.C.R. Assessing impacts of land use change on soil quality indicators in a loessial soil in Golestan Province, Iran. J. Agric. Sci. Technol., 2011, vol. 13, no. 5, pp. 727–742.
4. Rosell-Melé A., Moraleda-Cibrián N., Cartró-Sabaté M., Colomer-Ventura F., Mayor P., Orta-Martínez M. Oil pollution in soils and sediments from the Northern Peruvian Amazon. Sci. Total Environ., 2018, vols. 610–611, pp. 1010–1019. doi: 10.1016/j.scitotenv.2017.07.208.
5. Streche C., Cocârţǎ D.M., Istrate I.A., Badea A.A. Decontamination of petroleum-contaminated soils using the electrochemical technique: Remediation degree and energy consumption. Sci. Rep., 2018, vol. 8, no. 1, art. 3272, pp. 1–14. doi: 10.1038/s41598-018-21606-4.
6. Gao S., Liang J., Teng T., Zhang M. Petroleum contamination evaluation and bacterial community distribution in a historic oilfield located in loess plateau in China. Appl. Soil Ecol., 2019, vol. 136, pp. 30–42. doi: 10.1016/j.apsoil.2018.12.012.
7. Atlas R.M. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev., 1981, vol. 45, no. 1, pp. 180–209.
8. Mishra S., Jyot J., Kuhad R.C., Lal B. In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr. Microbiol., 2001, vol. 43, no. 5, pp. 328–335. doi: 10.1007/s002840010311.
9. Pacwa-Płociniczak M., Płaza G.A., Piotrowska-Seget Z. Monitoring the changes in a bacterial community in petroleum-polluted soil bioaugmented with hydrocarbon-degrading strains. Appl. Soil Ecol., 2016, vol. 105, pp. 76–85. doi: 10.1016/j.apsoil.2016.04.005.
10. Cerqueira V.S., Hollenbach E.B., Maboni F., Vainstein M.H., Camargo F.A.O., Peralba M. do C.R., Bento F.M. Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour. Technol., 2011, vol. 102, no. 23, pp. 11003–11010. doi: 10.1016/j.biortech.2011.09.074.
11. Aydin S., Karaçay H.A., Shahi A., Gökçe S., Ince B., Ince O. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol. Rev., 2017, vol. 31, no. 2, pp. 61–72. doi: 10.1016/j.fbr.2016.12.001.
12. Aranda E. Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr. Opin. Biotechnol., 2016, vol. 38, pp. 1–8. doi: 10.1016/j.copbio.2015.12.002.
13. Chigu N.L., Hirosue S., Nakamura C., Teramoto H., Ichinose H., Wariishi H. Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 5, pp. 1907–1916. doi: 10.1007/s00253-010-2616-1.
14. Tiwari J.N., Reddy M.M.K., Patel D.K., Jain S.K., Murthy R.C., Manickam N. Isolation of pyrene degrading Achromobacter xylooxidans and characterization of metabolic product. World J. Microbiol. Biotechnol., 2010, vol. 26, no. 10, pp. 1727–1733. doi: 10.1007/s11274-010-0350-6.
15. Ning D., Wang H., Ding C., Lu H. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation, 2010, vol. 21, no. 6, pp. 889–901. doi: 10.1007/s10532-010-9349-9.
16. Ichinose H. Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol. Appl. Biochem., 2013, vol. 60, no. 1, pp. 71–81. doi: 10.1002/bab.1061.
17. Radha K. V., Regupathi I., Arunagiri A., Murugesan T. Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem., 2005, vol. 40, no. 10, pp. 3337–3345. doi: 10.1016/j.procbio.2005.03.033.
18. Selvam K., Swaminathan K., Chae K.S. Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour. Technol., 2003, vol. 88, no. 2, pp. 115–119. doi: 10.1016/s0960-8524(02)00280-8.
19. Chikere C.B., Okpokwasili G.C., Chikere B.O. Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech, 2011, vol. 1, no. 3, pp. 117–138. doi: 10.1007/s13205-011-0014-8.
20. Hatakka A. Lignin-modifying enzymes from selected white-rot fungi: Production and role from in lignin degradation. FEMS Microbiol. Rev., 1994, vol. 13, nos. 2–3, pp. 125–135. doi: 10.1111/j.1574-6976.1994.tb00039.x.
21. Peláez F., Martínez M.J., Martínez A.T. Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol. Res., 1995, vol. 99, no. 1, pp. 37–42. doi: 10.1016/S0953-7562(09)80313-4.
22. Jayasinghe C., Imtiaj A., Lee G.W., Im K.H., Hur H., Lee M.W., Yang H.-S., Lee T.-S. Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiology, 2008, vol. 36, no. 2, pp. 114–120. doi: 10.4489/MYCO.2008.36.2.114.
23. Jong E., Field J.A., Bont J.A.M. Aryl alcohols in the physiology of ligninolytic fungi. FEMS Microbiol. Rev., 1994, vol. 13, nos. 2–3, pp. 153–187. doi: 10.1111/j.1574-6976.1994.tb00041.x.
24. Lumibao C.Y., Formel S., Elango V., Pardue J.H., Blum M., Van Bael S.A. Persisting responses of salt marsh fungal communities to the Deepwater Horizon oil spill. Sci. Total Environ., 2018, vol. 642, pp. 904–913. doi: 10.1016/j.scitotenv.2018.06.077.
25. Mikolasch A., Donath M., Reinhard A., Herzer C., Zayadan B., Urich T., Schauer F. Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan. Appl. Microbiol. Biotechnol., 2019, vol. 103, no. 17, pp. 7261–7274. doi: 10.1007/s00253-019-10032-9.
26. Vasco M.F., Cepero M.C., Restrepo S., Vives-Florez M.J. Recovery of mitosporic fungi actively growing in soils after bacterial bioremediation of oily sludge and their potential for removing recalcitrant hydrocarbons. Int. Biodeterior. Biodegrad., 2011, vol. 65, no. 4, pp. 649–655. doi: 10.1016/j.ibiod.2010.12.014.
27. Nkwelang G., Kamga H.F.L., Nkeng G.E., Antai S.P. Studies on the diversity, abundance and succession of hydrocarbon utilizing micro organisms in tropical soil polluted with oily sludge. Afr. J. Biotecnol., 2008, vol. 7, no. 8, pp. 1075–1080.
28. Llanos C., Kjøller A. Changes in the flora of soil fungi following oil waste application. Oikos, 1976, vol. 27, no. 3, pp. 377–382. doi: 10.2307/3543456.
29. Bundy J.G., Paton G.I., Campbell C.D. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol., 2002, vol. 92, no. 2, pp. 276–288. doi: 10.1046/j.1365-2672.2002.01528.x.
30. Stamets P. Mycelium Running: How Mushrooms Can Help Save the World. Berkeley, CA, Ten Speed Press., 2005. 356 p.
31. State Standard 17.4.4.02-2017. Nature protection (environmental management system). Soils. Methods for sampling and preparation of soil samples for chemical, bacteriological, and helminthological analyses. Moscow, Standartinform, 2017. 12 p. (In Russian)
32. Uspenskii V.A., Rodionova K.F., Gorskaya A.I., Shishkova A.P. (Eds.) Rukovodstvo po analizu bitumov i rasseyannogo organicheskogo veshchestva gornykh porod [Handbook on Analysis of Bitumens and Dispersed Organic Matter in Rocks]. Leningrad, Nedra, 1966. 316 p. (In Russian)
33. Khusnutdinov I.Sh., Bukharov S.V., Goncharova I.N. Opredelenie soderzhaniya smolisto-asfal'tovykh veshchestv [Measuring the Concentration of Tar-Asphalt Substances]. Kazan, Kazan. Gos. Tekhnol. Univ., 2006. 44 p. (In Russian)
34. Liu C.M., Kachur S., Dwan M.G., Abraham A.G., Aziz M., Hsueh P.R., Huang Y.T., Busch J.D., Lamit L.J., Gehring C.A., Keim P., Price L.B. FungiQuant: A broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol., 2012, vol. 12, art, 255, pp. 1–11. doi: 10.1186/1471-2180-12-255.
35. Faith D.P., Minchin P.R., Belbin L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio, 1987, vol. 69, no. 1, pp. 57–68. doi: 10.1007/BF00038687.
36. Lladó S., Gràcia E., Solanas A.M., Viñas M. Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biol. Biochem., 2013, vol. 67. pp. 114–123. doi: 10.1016/j.soilbio.2013.08.010.
37. Martin-Sanchez P.M., Gorbushina A.A., Toepel J. Quantification of microbial load in diesel storage tanks using culture- and qPCR-based approaches. Int. Biodeterior. Biodegrad., 2018, vol. 126, pp. 216–223. doi: 10.1016/j.ibiod.2016.04.009.
38. Ezekoye C.C., Chikere C.B., Okpokwasili G.C. Fungal diversity associated with crude oil-impacted soil undergoing in-situ bioremediation. Sustainable Chem. Pharm., 2018, vol. 10, pp. 148–152. doi: 10.1016/j.scp.2018.11.003.
39. Zhou Z.F., Wang M.X., Zuo X.H., Yao Y.H. Comparative investigation of bacterial, fungal, and archaeal community structures in soils in a typical oilfield in Jianghan, China. Arch. Environ. Contam. Toxicol., 2017, vol. 72, no. 1, pp. 65–77. doi: 10.1007/s00244-016-0333-1.
40. Zhou H., Huang X., Bu K., Wen F., Zhang D., Zhang C. Fungal proliferation and hydrocarbon removal during biostimulation of oily sludge with high total petroleum hydrocarbon. Environ. Sci. Pollut. Res., 2019, vol. 26, no. 32, pp. 33192–33201. doi: 10.1007/s11356-019-06432-z.
41. Liu X.-Z., Wang Q.-M., Göker M., Groenewald M., Kachalkin A. V., Lumbsch H.T., Millanes A.M., Wedin M., Yurkov A.M., Boekhout T., Bai F.-Y. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud. Mycol., 2015, vol. 81, pp. 85–147. doi: 10.1016/j.simyco.2015.12.001.
42. Summerbell R.C. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: Influence of site factors on fungal distributions. Stud. Mycol., 2005, vol. 53, pp. 121–145. doi: 10.3114/sim.53.1.121.
43. Nguyen H.D.T., Seifert K.A. Description and DNA barcoding of three new species of Leohumicola from South Africa and the United States. Persoonia, 2008, vol. 21, pp. 57–69. doi: 10.3767/003158508X361334.
44. Štursová M., Šnajdr J., Cajthaml T., Bárta J., Šantrůčková H., Baldrian P. When the forest dies: The response of forest soil fungi to a bark beetle-induced tree dieback. ISME J., 2014, vol. 8, no. 9, pp. 1920–1931. doi: 10.1038/ismej.2014.37.
45. Martin F., Kohler A., Duplessis S. Living in harmony in the wood underground: Ectomycorrhizal genomics. Curr. Opin. Plant Biol., 2007, vol. 10, no. 2, pp. 204–210. doi: 10.1016/j.pbi.2007.01.006.
46. Zhang T., Wang N.-F., Liu H.-Y., Zhang Y.-Q., Yu L.-Y. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (High Arctic). Front. Microbiol., 2016, vol. 7, art. 227, pp. 1–10. doi: 10.3389/fmicb.2016.00227.
47. Rybczyńska-Tkaczyk K., Korniłłowicz-Kowalska T. Activities of versatile peroxidase in cultures of Clonostachys rosea f. catenulata and Clonostachys rosea f. rosea during biotransformation of alkali lignin. J. AOAC Int., 2018, vol. 101, no. 5, pp. 1415–1421. doi: 10.5740/jaoacint.18-0058.
48. Covino S., Stella T., D’Annibale A., Lladó S., Baldrian P., Čvančarová M., Cajthaml T., Petruccioli M. Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil. Sci. Total Environ., 2016, vol. 566–567, pp. 250–259. doi: 10.1016/j.scitotenv.2016.05.018.
49. Siegel-Hertz K., Edel-Hermann V., Chapelle E., Terrat S., Raaijmakers J.M., Steinberg C. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Front. Microbiol., 2018, vol. 9, art. 568, pp. 1–16. doi: 10.3389/fmicb.2018.00568.
50. Shen W., Zhu N., Cui J., Wang H., Dang Z., Wu P., Luo Y., Shi C. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicol. Environ. Saf., 2016, vol. 124, pp. 120–128. doi: 10.1016/j.ecoenv.2015.10.005.
51. Wang Y., Xu J., Shen J., Luo Y., Scheu S., Ke X. Tillage, residue burning and crop rotation alter soil fungal community and water-stable aggregation in arable fields. Soil Tillage Res., 2010, vol. 107, no. 2, pp. 71–79. doi: 10.1016/j.still.2010.02.008.
52. Zhou D., Jing T., Chen Y., Wang F., Qi D., Feng R., Xie J., Li H. Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol., 2019, vol. 19, no. 1, art. 161, pp. 1–13. doi: 10.1186/s12866-019-1531-6.
53. Torres M.S., White J.F. Clavicipitaceae: free-living and saprotrophs to plant endophytes. In: Encyclopedia of Microbiology. Acad. Press, 2009, pp. 422–430. doi: 10.1016/B978-012373944-5.00329-1.
54. Osono T. Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res., 2020, vol. 35, no. 1, pp. 30–43. doi: 10.1111/1440-1703.12063.
55. Chen D.M., Taylor A.F.S., Burke R.M., Cairney J.W.G. Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. New Phytol., 2001, vol. 152, no. 1, pp. 151–158. doi: 10.1046/j.0028-646x.2001.00232.x.
56. Chen D.M., Bastias B.A., Taylor A.F.S., Cairney J.W.G. Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol., 2003, vol. 157, no. 3, pp. 547–554. doi: 10.1046/j.1469-8137.2003.00687.x.
57. Floudas D., Binder M., Riley R., Barry K., Blanchette R.A., Henrissat B., Martínez A.T., Otillar R., Spatafora J.W., Yadav J.S., Aerts A., Benoit I., Boyd A., Carlson A., Copeland A., Coutinho P.M., de Vries R.P., Ferreira P., Findley K., Foster B., Gaskell J., Glotzer D., Górecki P., Heitman J., Hesse C., Hori Ch., Igarashi K., Jurgens J.A., Kallen N., Kersten Ph., Kohler A., Kües U., Kumar T.K.A., Kuo A., LaButti K., Larrondo L.F., Lindquist E., Ling A., Lombard V., Lucas S., Lundell T., Martin R., McLaughlin D.J., Morgenstern I., Morin E., Murat C., Nagy L.G., Nolan M., Ohm R.A., Patyshakuliyeva A., Rokas A., Ruiz-Dueñas F.J., Sabat G., Salamov A., Samejima M., Schmutz J., Slot J.C., John F.St., Stenlid J., Sun H., Sun Sh., Syed K., Tsang A., Wiebenga A., Young D., Pisabarro A., Eastwood D.C., Martin F., Cullen D., Grigoriev I.V., Hibbett D.S. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 2012, vol. 336, no. 6089, pp. 1715–1719. doi: 10.1126/science.1221748.
58. Qhanya L.B., Matowane G., Chen W., Sun Y., Letsimo E.M., Parvez M., Yu J.H., Mashele S.S., Syed K. Genome-wide annotation and comparative analysis of cytochrome P450 monooxygenases in basidiomycete biotrophic plant pathogens. PLoS One, 2015, vol. 10, no. 11, art. e0142100, pp. 1–17. doi: 10.1371/journal.pone.0142100.
59. Syed K., Porollo A., Lam Y.W., Yadav J.S. A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: Role of Trp129 and Leu324. PLoS ONE, 2011, vol. 6, no. 12, art. e28286, pp. 1–14. doi: 10.1371/journal.pone.0028286.
60. Akapo O.O., Padayachee T., Chen W., Kappo A.P., Yu J.H., Nelson D.R., Syed K. Distribution and diversity of cytochrome p450 monooxygenases in the fungal class Tremellomycetes. Int. J. Mol. Sci., 2019, vol. 20, no. 12, art. 2889, pp. 1–14. doi: 10.3390/ijms20122889.
The content is available under the license Creative Commons Attribution 4.0 License.