V.V. Neklyudov a*, G.A. Boos a**, M.M. Shulaeva b***, O.A. Lodochnikova b****,
G.A. Chmutowa a*****, E.P. Bulavina a******, R.R. Amirov a*******
aKazan Federal University, Kazan, 420008 Russia
bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center,
Russian Academy of Sciences, Kazan, 420088 Russia
E-mail: *sacredbox@hotmail.com, **anezka_93@mail.ru, ***mshulaeva@iopc.ru, ****lod_olga@mail.ru, *****lod_olga@mail.ru, ******bulawinaelizaweta@yandex.ru, *******ramirov@kpfu.ru
Received September 13, 2019
Full text PDF
DOI: 10.26907/2542-064X.2020.1.33-51
For citation: Neklyudov V.V., Boos G.A., Shulaeva M.M., Lodochnikova O.A., Chmutowa G.A., Bulavina E.P., Amirov R.R. Complexes of 1,8-bis(hydrazidomethylsulfonyl)octane and 1,10-bis(hydrazidomethylsulfonyl)decane with copper(II). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 1, pp. 33–51. doi: 10.26907/2542-064X.2020.1.33-51. (In Russian)
Abstract
1,8-bis(hydrazidomethylsulfonyl)octane and 1,10-bis(hydrazidomethylsulfonyl)decane differ by hydrocarbon spacer length, solubility in water, and polymerization tendencies. They and their amides are known to be new antitubercular agents. The substances act as polydentate ligands; in the pH range of 4.5–5.0 and with copper(II), they form cationic mono- and binuclear complexes. Preparatively isolated copper complexes with each of the two compounds have different compositions, which also differ from the composition of complexes in the solution.
Keywords: 1,8-bis(hydrazidomethylsulfonyl)octane, 1,10-bis(hydrazidomethylsulfonyl)decane, copper(II), acid-base properties, complexation, ligand denticity, three-dimensional structure, elemental analysis, X-Ray crystallography
Acknowledgments. We are grateful to the staff of Distributed Spectral-Analytical Center of Shared Facilities for Study of Structure, Composition and Properties of Substances and Materials of Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences for their research with the help of the XRC method.
The study is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.
Figure Captions
Fig. 1. Absorption spectra of the aqueous solutions of L compound. Concentrations of CL?104, mol/L 1 – 0.10, 2 – 0.20, 3 – 0.30, 4 – 0.40, 5 – 0.50, 6 – 0.60, 7 – 0.70; 8 – 0.80; 9 – 0.90; 10 – 1.00; 11 – 1.20; 12 – 1.50; 13 – 2.00; 14 – 10.00. l = 1 cm. pH: 1 – 5.97, 2 – 5.98, 3 – 5.96, 4 – 5.94, 5 – 5.94, 6 – 6.97, 7 – 6.26; 8 – 5.94, 9 – 5.97, 10 – 5.94, 11 – 5.21, 12 – 6.21, 13 – 6.08.
Fig. 2. n – pH dependence (a). Concentrations, mol/L: CL 1.036∙10–3, CHCl 4.0∙10–3, CNaOH 1.72.0∙10–3. V0 = 20.0 mL. Diagram of sharing (b) depending of the pH value of L compound of protonated and deprotonated particles in the aqueous solution. 0 – L; 1 – [LH]+; 2 – [LH2]2+; 3 – [L1H–1]–; 4 – [L1H–2]2–; 5 – [L(L1H–1)]–.
Fig. 3. Absorption spectra (а) of the aqueous solutions of Cu(NO3)2 (1), L compound without (2) and with copper(II) (3), additive absorption spectrum of Cu(NO3)2–L system (4). Concentrations, mol/L: СL 2∙10–4 (2, 3); СCu2+ 5∙10–5 (1, 3). pH: 1 – 5.40; 2 – 5.55, 3 – 5.03. l = 1 cm. Sharing of complex forms (b) in Cu(NO3)2–L system. CCu2+ 1∙10–4 mol/L. 0 – Cu2+, 1 – [CuL]2+, 2 – [CuL2]2+.
Fig. 4. Absorption spectra (a) of copper(II) solutions (2, 6), Z compound without (1, 4, 7) and with (3, 5) copper(II). Concentrations, mol/L: CZ∙104: 1 – 10, 4 – 4, 7 – 1, 3 – 10, 5 – 4. CCu2+ 104: 2 – 10, 6 – 4, 3 – 10, 5 – 4. λmax, nm: 1 – 195, 4 – 195–197, 7 – 193–195, 3 – 201, 5 – 198–200, 2 – 203, 6 – 199–204. ε, L/(mol?cm): 1 – ε195 6.48∙103, 4 – ε196 8.94∙103, 7 – ε194 9.96∙103, 2 – ε203 1.75∙104, 6 - 2.05∙104, 3 – ε201 2.04∙104, 5 – ε199 2.74∙104. Absorption spectra of Z compound (b) in aqueous DMSO solution (60 vol. % DMSO). Concentrations, mol/L: CZ∙104. 1 – 0.5, 2 – 1.0, 3 – 1.5, 4 – 2.0, 5 – 4.5. Sharing of (c) monomeric and tetrameric forms (based on the analysis of experimental data for λ 255 nm). Experimental and theoretically calculated values of the molar absorptivity coefficients (d) for λ 255 nm (1) and 260 nm (2), R (λ 255 nm) 2.10%, R (λ 260 nm) 1.52%.
Fig. 5. A248 – CZ/CCu2+ dependence for the aqueous DMSO solution. СDMSO 60 vol. %.
Fig. 6. Schematic structure of [Cu2L3](NO3)4∙2H2O binuclear complex (a), molecular structure of the complex based on the data of X-ray crystallography (b). Nitrate anions and water molecules are not shown for simplification purposes.
References
- Fattakhov S.G., Shulaeva M.M., Kravchenko M.A., Mingaleev D.N., Skornyakov S.N., Sinyashin O.G. α,ω-Bis(amide- and hydrazide methyl sulfinyl- and sulphonyl)alkanes having antituberculotic activity and α,ω-Bis(methoxy carbonyl methyl sulfinyl- or sulphonyl)alkanes for their production. Patent RF no. 2015101008/04, 2016. (In Russian)
- Neklyudov V.V., Boos G.A., Shulaeva M.M., Chmutova G.A., Bagina Y.I., Salnikov Yu.I., Amirov R.R. Solution state and complexing ability of 1,4-bis(amidomethylsulfinyl)butane toward iron(III), copper(II), cobalt(II), nickel(II), and manganese(II). Russ. Chem. Bull., 2017, vol. 66, no. 4, pp. 628–635. doi: 10.1007/s11172-017-1783-y.
- Neklyudov V.V., Boos G.A., Chmutova G.A., Shulaeva M.M., Bagina Y.I., Amirov R.R. Complex formation of 1,5-bis(amidomethylsulfonyl)pentane with copper(II) and iron(III). Russ. J. Gen. Chem., 2018, vol. 88, no. 8, pp. 1672–1680. doi: 10.1134/S1070363218080194.
- Schönfeldt N. Grenzflächenaktive Äthylenoxid-Addukte. Stuttgard, Wiss. Verlagsges. mbH, 1976. 40 Abb., 137 Tab., XXIV, 1288 S. (In German)
- Gordon A.J., Ford R.A. The Chemist's Companion. A Handbook of Practical Data, Techniques, and References. New York, Wiley, 1973. 560 p.
- Aleksandrov V.V. Kislotnost' nevodnykh rastvorov [Acidity of Nonaqueous Solutions]. Kharkov, Vish. Shk., 1981. 152 p. (In Russian)
- Salnikov Yu.I., Glebov A.N., Devyatov F.V. Poliyadernye kompleksy v rastvorakh [Polynuclear Complexes in Solutions]. Kazan, Izd. Kazan. Univ., 1989. 287 p. (In Russian)
- Vasil'ev V.P. Termodinamicheskie svoistva rastvorov elektrolitov [Thermodynamic Properties of Electrolyte Solutions]. Moscow, Vyssh. Shkola, 1982. 320 p. (In Russian)
- Shcherbakova E.S., Gol'dshtein I.P., Gur'yanova E.N., Kocheshkov K.A. Method of treatment of the results of a physicochemical investigation of complex compounds in solutions on an electronic computer. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1975, vol. 24, no. 6, pp. 1165–1172. (In Russian)
- Hartley F.R., Burgess C., Alcock R.M. Solution in Equilibria. New York, Ellis Horwood, 1980. 361 p.
- Afanas'eva G.V. Complex formation and chemical exchange in water and water-organic solutions of copper(II), nickel(II), and cobalt(II) with hydrazides of some acids. Diss. Cand. Chem. Sci. Kazan, 2008. 240 p. (In Russian)
- Přibil R. Komplexony v chemické analyse. Praha, Nakladatelství Československé akad., 1957. 473 s. (In Czech)
- Sheldrick G.M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, pt. 5, pp. 3–8. doi: 10.1107/S2053273314026370.
- Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, pt. 1, pp. 3–8. doi: 10.1107/S2053229614024218.
- Farrugia L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr., 1999, vol. 32, pt. 4, pp. 837–838. doi: 10.1107/S0021889899006020.
- APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A, Bruker Advanced X-ray Solutions. Madison, Wis., BrukerAXS Inc., 2006.
- Spektroskopicheskie metody v khimii kompleksnykh soedinenii [Spectral Methods in the Chemistry of Complex Compounds]. Vdovenko V.M. (Ed.). Moscow, Khimiya, 1964. 268 p. (In Russian)
- Neklyudov V.V., Voronina Yu.K., Boos G.A., Shulaeva M.M., Fattakhov S.G., Salnikov Yu.I. Pirafeneband melafene drugs and their components in the reaction with copper(II) chloride in a chloride medium. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2012, vol. 154, no. 4, pp. 105–111. (In Russian)
- Lever A.B.P. Inorganic Electronic Spectroscopy (Studies in Physical and Theoretical Chemistry). Elsevier Sci., 1986. 864 p. (In Russian)
- Salnikov Yu.I., Boos G.A., Gibadullina Ch.V. Solvation of copper(II) and ethylenediamine tetraacetic acid in some water–organic solvent media. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1991, vol. 17, no. 5, pp. 20–24. (In Russian)
- Rossotti F.J.C., Rossotti H. The Determination of Stability Constants and Other Equilibrium Constants in Solution. New York, Toronto, London, McGraw-Hill Book Co., 1961. 425 p.
- Umland F., Janssen A., Thierig D., Wünsch G. Theorie und praktische Anwendung von Komplexbildnern. Frankfurt am Main, Frankfurt Akad. Verlagsges., 1971. 759 S. (In German)
- Tsitsishvili A.D., Tsutsunava T.I., Gogorishvili P.V., Kharitonov Yu.Ya. Complexes of cobalt(II), nickel(II), and copper(II) with dihydrazide of aselaic acid. Issled. Obl. Khim. Kompleksn. Prostykh Soedin. Nek. Perekhodnykh Redk. Met., 1978, no. 3, pp. 21–23. (In Russian)
- Kiselev Yu.M. Stabilization of oxidation states in transition metals. Russ. J. Inorg. Chem., 2007, vol. 52, no. 11, pp. 1717–1725. doi: 10.1134/S0036023607110149.

The content is available under the license Creative Commons Attribution 4.0 License.