G.F. Khadieva a*, M.T. Lutfullin a**, A.A. Nikolaeva a***, N.K. Mochalova a, S.Yu. Smolentsev b****, A.M. Mardanova a*****, M.R. Sharipova a******
aKazan Federal University, Kazan, 420008 Russia
bMari State University, Yoshkar-Ola, 424000 Russia
E-mail: *g.h95@mail.ru, **lutfullin.marat2012@yandex.ru, ***azazel1212@rambler.ru, ****Smolentsev82@mail.ru, *****mardanovaayslu@mail.ru, ******marsharipova@gmail.com
Received December 18, 2018
Full text PDF
DOI: 10.26907/2542-064X.2019.3.472-489
For citation: Khadieva G.F., Lutfullin M.T., Nikolaeva A.A., Mochalova N.K., Smolencev S.Y., Mardanova A.M., Sharipova M.R. The effect of Bacillus subtilis GM2 and GM5 probiotics on the growth and fodder digestibility of broiler chickens. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 3, pp. 472–489. doi: 10.26907/2542-064X.2019.3.472-489. (In Russian)
Abstract
The probiotic properties of the Bacillus subtilis GM2 and GM5 strains were studied on 90 Cobb 500 broiler chickens aged one day that were randomly divided into three groups: the control group with the standard diet and two experimental groups (30 chickens per group) with the diet supplemented with B. subtilis GM2 (group 1) and GM5 (group 2) spores. The addition of B. subtilis GM2 and GM5 spores at a concentration of 1·107 CFU/g to the ration of broiler chickens improved their growth rate, as well as increased the digestibility of nutrients and modulated the intestinal microflora in them. The use of probiotics stimulated an increase in the live weight of chickens by 6.30% and 13.78% (p = 0.05) as compared with the control group. The average daily weight gain in experimental groups 1 and 2 amounted to 52.82 ± 0.36 g and 56.54 ± 0.47 g per chicken, which is more than in the control group (49.69 ± 0.40 g) – by 6.30% and 13.79% (p = 0.05), respectively. The administration of probiotics by feeding favored an increase in the population of lactic acid bacteria in the small and large (to a lesser extent) intestine – bacteria belonging to the Enterobacteriaceae, Lactobacillaceae, and Clostridiaceae families were isolated from the intestinal contents and identified. The veterinary-sanitary examination found that the meat of broiler chickens from the experimental groups meets all the GOST requirements for organoleptic, physico-chemical, and bacterioscopic characteristics. Thus, probiotics based on the B. subtilis GM2 and GM5 strains have a positive effect on the growth and fodder digestibility of broiler chickens.
Keywords: probiotics, Bacillus subtilis GM2, Bacillus subtilis GM5, broiler chickens, productivity, intestinal microbiota
Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and supported by the Russian Science Foundation (project no. 16-16-04062).
References
- Akimov A.V. World population forecast up to 2050 and labor saving technologies. Vost. Anal., 2015, no. 5, pp. 9–26. (In Russian)
- Markowiak P., Śliżewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog., 2018, vol. 10, art. 21, pp. 1–20. doi: 10.1186 / s13099-018-0250-0.
- Truszczyński M., Pejsak Z. Wpływ stosowania u zwierząt antybiotyków na lekooporność bakterii chorobotwórczych dla człowieka. Med. Weter., 2006, vol. 62, pp. 1339–1343. (In Polish)
- Biernasiak J., Śliżewska K., Libudzisz Z. Negatywne skutki stosowania antybiotyków. Postepy Nauk Roln., 2010, vol. 3, pp. 105–117. (In Polish)
- FAO. Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada, 2002. 11 p.
- Griggs J.P., Jacob J.P. Alternatives to antibiotics for organic poultry production. J. Appl. Poult. Res., 2005, vol. 14, no. 4, pp. 750–756. doi: 10.1093/japr/14.4.750.
- Feoktistova N.V., Mardanova A.M., Hadieva G.F., Sharipova M.R. Probiotics based on bacteria from the genus Bacillus in poultry breeding. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 1, pp. 85–107. (In Russian)
- Wine E., Gareau M.G., Johnson-Henry K., Sherman P.M. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol. Lett., 2009, vol. 300, no. 1, pp. 146–152. doi: 10.1111/j.1574-6968.2009.01781.x.
- Zhao P.Y., Kim I.H. Effect of direct-fed microbial on growth performance, nutrient digestibility, fecal noxious gas emission, fecal microbial flora and diarrhea score in weanling pigs. Anim. Feed Sci. Technol., 2015, vol. 200, pp. 86–92. doi: 10.5713/ajas.2006.587.
- Williams C.H., Witherly S.A., Buddington R.K. Influence of dietary neosugar on selected bacterial groups of the human faecal microbiota. Microb. Ecol. Health Dis., 1994, vol. 7, no. 2, pp. 91–97. doi: 10.3109/08910609409141577.
- Haghighi H.R., Gong J., Gyles C.L., Hayes M.A., Sanei B., Parvizi P., Gisavi H., Chambers J.R., Sharif Sh. Modulation of antibody-mediated immune response by probiotics in chickens. Clin. Diagn. Lab. Immunol., 2005, vol. 12, no. 12, pp. 1387–1392. doi: 10.1128/CDLI.12.12.1387-1392.2005.
- Silva P.T., Fries L.L.M., Menezes C.R., Silva C.B., Soriani H.H., Bastos J.O., Motta M.H., Ribeiro R.F. Microencapsulação de probióticos por spray drying: avaliação da sobrevivência sobcondições gastrointestinais simuladas e da viabilidade sob diferentes temperaturas de armazenamento. Ciênc. Rural., 2015, vol. 45, no. 7, pp. 1342–1347. doi: 10.1590/0103-8478cr20140211. (In Portuguese)
- Quartieri A., Simone M., Gozzoli C., Popovic M., D’Auria G., Amaretti A., Raimondi S., Rossi M. Comparison of culture-dependent and independent approaches to characterize fecal bifidobacteria and lactobacilli. Anaerobe, 2016, vol. 38, pp. 130–137. doi: 10.1016/j.anaerobe.2015.10.006.
- Santini C., Baffoni L., Gaggia F., Granata M., Gasbarri R., Di Gioia D., Biavati B. Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. Int. J. Food Microbiol., 2010, vol. 141, suppl., pp. S98–S108. doi: 10.1016/j.ijfoodmicro.2010.03.039.
- Barbosa T., Serra C.R., La Ragione R., Woodward M., Henriques A. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl. Environ. Microbiol., 2005, vol. 71, no. 2, pp. 968–978. doi: 10.1128/AEM.71.2.968-978.2005.
- Guo X., Li D., Lu W., Piao X., Chen X. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie van Leeuwenhoek, 2006, vol. 90, pp. 139–146. doi: 10.1007/s10482-006-9067-9.
- Setlow P. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol., 2006, vol. 101, no. 3, pp. 514–525. doi: 10.1111/j.1365-2672.2005.02736.x.
- Chaiyawan N., Taveeteptaikul P., Wannissorn B., Ruengsomwong S., Klungsupya P., Buaban W., Itsaranuwat P. Characterization and probiotic properties of Bacillus strains isolated from broiler. Thai J. Vet. Med., 2010, vol. 40, no. 2, pp. 207–214.
- Shivaramaiah S., Pumford N.R., Morgan M.J., Wolfenden R.E., Wolfenden A.D., Torres-Rodríguez A., Hargis B.M., Téllez G. Evaluation of Bacillus species as potential candidates for direct-fed microbials in commercial poultry. Poult. Sci., 2011, vol. 90, no. 7, pp. 1574–1580. doi: 10.3382/ps.2010-00745.
- La Ragione R.M., Woodward M.J. Competitive exclusion by Bacillus subtilis spores of Salmonella enteric serotype Enteritidis and Clostridium perfringens in young chickens. Vet. Microbiol., 2003, vol. 94, no. 3, pp. 245–256. doi: org/10.1016/S0378-1135(03)00077-4.
- Lee K.W., Lee S.H., Lillehoj H.S., Li G.X., Jang S.I., Babu U.S., Park M.S., Kim D.K., Lillehoj E.P., Neumann A.P., Rehberger T.G., Siragusa G.R. Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poult. Sci., 2010, vol. 89, no. 2, pp. 203–216. doi: 10.3382 / ps.2009-00418.
- Knap I., Kehlet A.B., Bennedsen M., Mathis G.F., Hofacre C.L., Lumpkins B.S., Jensen M.M., Raun M., Lay A. Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poult. Sci., 2011, vol. 90, no. 8, pp. 1690–1694. doi: 10.3382 / ps.2010-01056.
- Sumi C., Yang B., Yeo I.C., Hahm Y. Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can. J. Microbiol., 2015, vol. 61, no. 2, pp. 93–103. doi: 10.1139/cjm-2014-0613.
- Lee K., Lillehoj H.S., Jang S.I., Lee S.H., Bautista D.A., Siragusa G.R. Effect of Bacillus subtilis-based direct-fed microbials on immune status in broiler chickens raised on fresh or used litter. Asian-Australas. J. Anim. Sci., 2013, vol. 26, no. 11, pp. 1592–1597. doi: 10.5713/ajas.2013.13178.
- Khadieva G.F., Lutfullin M.T., Mochalova N.K., Lenina O.A., Sharipova M.R., Mardanova A.M. New Bacillus subtilis strains as promising probiotics. Microbiology, 2018, vol. 87, no. 4, pp. 463–471. doi: 10.1134/S0026261718040112.
- Mardanova A.M., Hadieva G.F., Lutfullin M.T., Khilyas I.V., Minnullina L.F., Gilyazeva A.G., Bogomolnaya L.M., Sharipova M.R. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agric. Sci., 2017, vol. 8, pp. 1–20. doi: 10.4236/as.2017.81001.
- State Standard 7702.0-74 Poultry meat. Methods of sampling. Organoleptic methods of quality assessment, 1975, pp. 19–21. (In Russian)
- State Standard 33824-2016 Foodstuffs and food ingredients. Stripping voltammetric method for determination of toxic elements (cadmium, lead, copper and zink), 2017, pp. 46. (In Russian)
- State Standard 56931-2016 Foodstuffs and food raw materials. Voltammetric method of mercury content determination, 2017, pp. 23. (In Russian)
- State Standard 31628-2012 Food-stuffs and food raw materials. Anodic stripping voltammetric method of arsenic mass concentration determination, 2013, pp. 28. (In Russian)
- State Standard 9959-2015 Meat and meat products. General conditions of organoleptical assessment (with amendments), 2017, pp. 33. (In Russian)
- Ashmarin I.P., Vorob’ev A.A. Statisticheskie metody v mikrobiologicheskikh issledovaniyakh [Statistical Methods in Microbiological Research]. Leningrad, Medgiz, 1962. 180 p. (In Russian)
- Grant A., Gay C.G., Lillehoj H.S. Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathol., 2018, vol. 47, no. 4, pp. 339–351. doi: 10.1080/03079457.2018.1464117.
- Awad W.A., Ghareeb K., Abdel-Raheem S., Böhm J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci., 2009, vol. 88, no. 1, pp. 49–56. doi: 10.3382/ps.2008-00244.
- Awad W.A., Ghareeb K., Böhm J. Effect of addition of a probiotic microorganism to broiler diet on intestinal mucosal architecture and electrophysiological parameters. J. Anim. Physiol. Anim. Nutr., 2010, vol. 94, no. 4, pp. 486–494. doi: 10.1111/j.1439-0396.2009.00933.x.
- Park J.H., Kim I.H. Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poult. Sci., 2014, vol. 93, no. 8, pp. 2054–2059. doi: 10.3382/ps.2013-03818.
- Edens F.W. An alternative for antibiotic use in poultry: Probiotics. Braz. J. Poult. Sci., 2003, vol. 5, pp. 75–97. doi: 10.1590/S1516-635X2003000200001.
- Pelícia K., Mendes A.A., Saldanha E.S.P.B., Pizzolante C.C., Takahashi S.E., Moreira J., Garcia R.G., Quinteiro R.R., Paz I.C.L.A., Komiyama C.M. Use of prebiotics and probiotics of bacterial and yeast origin for free-range broiler chickens. Braz. J. Poult. Sci., 2004, vol. 6, no. 3, pp. 163–169. doi: 10.1590/S1516-635X2004000300006.
- Knarreborg A., Brockmann E., Høybye K., Knap I., Lund B., Milora N., Leser T.D. Bacillus subtilis (DSM17299) modulates the ileal microbial communities and improves growth performance in broilers. Int. J. Prebiotics Probiotics, 2008, vol. 3, no. 2, pp. 83–88.
The content is available under the license Creative Commons Attribution 4.0 License.