K.G. Giniyatullin a*, S.S. Ryazanov b**, E.V. Smirnova a***, L.I. Latypova a*****, L.Yu. Ryzhikh a*****
aKazan Federal University, Kazan, 420008 Russia
bResearch Institute for Problems of Ecology and Mineral Wealth Use, Tatarstan Academy of Sciences, Kazan, 420087 Russia
E-mail: *ginijatullin@mail.ru, **erydit@yandex.ru, ***elenavsmirnova@mail.ru, ****leisana-2009@mail.ru, *****ludarigih@mail.ru
Received January 11, 2019
DOI: 10.26907/2542-064X.2019.2.275-292
For citation: Giniyatullin K.G., Ryazanov S.S., Smirnova E.V., Latypova L.I., Ryzhikh L.Yu. Using geostatistical methods for evaluating organic matter reserves in fallow soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 2, pp. 275–292. doi: 10.26907/2542-064X.2019.2.275-292. (In Russian)
Abstract
In the samples taken layer by layer (every 5 cm) from the old arable horizon of fallow light gray forest soils, the content of organic matter and the bulk density were determined in order to calculate humus reserves. All samples were taken from 50 sampling points distributed along the study site according to a stratified random pattern. The amount of humus reserves was calculated using the geostatistical interpolation methods with regard to the spatial, horizontal, and vertical variability of organic matter content in the old arable horizon, as well as its bulk density and thickness. The results obtained show that the accumulation of soil organic matter (SOM) under deposits occurs primarily in the upper part of the topsoil horizon; the amount of humus that accumulated over 15 years under fallow vegetation is 21% of the total reserve. This paper also discusses the methodological aspects of soil sampling for unbiased estimate of humus reserves.
Keywords: fallow soils, organic matter reserves, geostatistics
Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 17-04-00846).
Figure Captions
Fig. 1. Sampling scheme.
Fig. 2. Variograms of humus reserves, layer by layer: a) 0–5 cm; b) 5–10 cm; c) 10–15 cm; d) 15–b cm and the lower boundary of the arable horizon (e).
Fig. 3. Spatial distribution of humus reserves, layer by layer: a) 0–5 cm; b) 5–10 cm; c) 10–15 cm; d) 15–b cm and the depth of the lower boundary of the arable horizon (e).
Fig. 4. Spatial distribution of the bulk density.
Fig. 5. Humus reserves in the old arable horizon, layer by layer: a) 0–5 cm; b) 5–10 cm; c) 10–15 cm; d) 15–b cm.
Fig. 6. Total humus reserves in the old arable horizon (a) and accumulated humus reserves in the layer of 0–15 cm (b), t/ha.
References
Larionova A.A., Yermolaev A.M., Blagodatsky S.A., Rozanova L.N., Yevdokimov I.V., Orlinsky D.B. Soil respiration and carbon balance of gray forest soils as affected by land use. Biol. Fertil. Soils, 1998, vol. 27, no. 3, pp. 251–257. doi: 10.1007/s003740050429.
Kurganova I.N., Yermolaev A.M., Lopes de Gerenyu V.O., Larionova A.A., Kuzyakov Ya., Keller T., Lange S. Carbon balance in the soils of abandoned lands in Moscow region. Eurasian Soil Sci., 2007, vol. 40. no. 1, pp. 51–58. doi: 10.1134/S1064229307010085.
Dugas W.A., Heuer M.L., Mayeux H.S. Carbon dioxide fluxes over bermudagrass, native prairie, and sorghum. Agric. For. Meteorol., 1999, vol. 93, no. 2, pp. 121–139. doi: 10.1016/S0168-1923(98)00118-X.
Sims L.P., Bradford J.A. Carbon dioxide fluxes in a Southern Plains prairie. Agric. For. Meteorol., vol. 109, no. 2, pp. 117–134. doi: 10.1016/S0168-1923(01)00264-7.
Guo L.B., Gifford R.M. Soil carbon stock and land use change: A meta analysis. Global Change Biol., 2002, vol. 8, no. 4, pp. 345–360. doi: 10.1046/j.1354-1013.2002.00486.x.
Karelin D.V., Lyuri D.I., Goryachkin S.V., Lunin V.N., Kudikov A.V. Сhanges in the carbon dioxide emission from soils in the course of postagrogenic succession in the Chernozems forest-steppe. Eurasian Soil Sci., 2015, vol. 48, no. 11, pp. 1229–1241. doi: 10.1134/S1064229315110095.
Kuznetsova I.V., Tikhonravova P.I., Bondarev A.G. Changes in the properties of cultivated gray forest soils after their abandoning. Eurasian Soil Sci., 2009, vol. 42, no. 9, pp. 1062–1070. doi: 10.1134/S1064229309090142.
Sorokina N.P., Kozlov D.N., Kuznetsova I.V. Assessment of the postagrogenic transformation of soddy-podzolic soils: Cartographic and analytic support. Eurasian Soil Sci., 2013, vol. 46, no. 10, pp. 1007–1019. doi: 10.1134/S1064229313100074.
Kurganova I.N., Kudeyarov V.N., De Gereny L. Updated estimate of carbon balance on Russian territory. Tellus, 2010, vol. 62, no. 5, pp. 497–505. doi: 10.1111/j.1600-0889.2010.00467.x.
Mueller C.W., Koegel-Knabner I. Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol. Fertil. Soils, 2009, vol. 45, no. 4, pp. 347–359. doi: 10.1007/s00374-008-0336-9.
Erokhova A.A., Makarov M.I., Morgun E.G., Ryzhova I.M. Effect of the natural reforestation of an arable land on the organic matter composition in soddy-podzolic soils. Eurasian Soil Sci., 2014, vol. 47, no. 11, pp. 1100–1106. doi: 10.1134/S1064229314110040.
Litvinovich A.V., Pavlova O.Yu. Changes in the humus status of a layland sandy gleyic soddy-podzolic soil. Eurasian Soil Sci., 2007, vol. 40, no. 11, pp. 1181–1186. doi: 10.1134/S1064229307110051.
Lyuri D.I., Goryachkin S.V., Karavaeva N.A., Denisenko E.A., Nefedova T.T. Dinamika sel'skokhozyaistvennykh zemel' Rossii v XX veke i postagrogennoe vosstanovlenie rastitel'nosti pochv [The Dynamics of Agricultural Lands in Russia during the 20th Century and the Postagrogenic Restoration of Vegetation and Soils]. Moscow, GEOS, 2010. 416 p. (In Russian)
Kalinina O., Chertov O., Dolgikh A.V., Goryachkin S.V., Lyuri D.I., Vormstein S., Giani L. Self-restoration of post-agrogenic Albeluvisols: Soil development, carbon stocks and dynamics of carbon pools. Geoderma, 2013, vols. 207–208, pp. 221–233. doi: 10.1016/j.geoderma.2013.05.019.
Ryzhova I.M., Erokhova A.A., Podvezennaya M.A. Dynamics and structure of carbon storage in the postagrogenic ecosystems of the southern taiga. Eurasian Soil Sci., 2014, vol. 47, no. 12, pp. 1207–1215. doi: 10.1134/S1064229314090117.
Romanovskaya A.A. Organic carbon in long-fallow lands of Russia. Eurasian Soil Sci., 2006, vol. 39, no. 1, pp. 44–52. doi: 10.1134/S1064229306010066.
Karelin D.V., Goryachkin S.V., Kudikov A.V., Lopes de Gerenu V.O., Lunin V.N., Dolgikh A.V., Lyuri D.I. Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia. Eurasian Soil Sci., 2017, vol. 50, no. 5, pp. 559–572. doi: 10.1134/S1064229317050076.
Telesnina V.M., Vaganov I.E., Karlsen A.A., Ivanova A.E., Zhukov M.A., Lebedev S.M. Specific features of the morphology and chemical properties of coarse-textured postagrogenic soils of the southern taiga, Kostroma oblast. Eurasian Soil Sci., 2016, vol. 49, no. 1, pp. 102–115. doi: 10.1134/S1064229316010117.
Giniyatullin K.G., Shinkarev A.A., Fazylova A.G., Kuzmina K.I., Shinkarev A.A., Jr. Spatial heterogeneity of the secondary humus accumulation in old arable horizons of fallow light-grey forest soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2012, vol. 154, no. 4, pp. 61–70. (In Russian)
Giniyatullin K.G., Mukhametgalieva G.Ya., Latypova A.I. Application of various approaches to representative sampling for studying humus accumulation in fallow soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2013, vol. 155, no. 3, pp. 208–220. (In Russian)
Kerry R., Oliver V.A., Frogbrook Z.L. Sampling in precision agriculture. In: Oliver M.A. (Ed.) Geostatistical Applications for Precision Agriculture. Springer, 2010, pp. 35–64.
Walvoort D.J.J., Brus D.J., de Gruijter J.J. An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means. Comput. Geosci., 2010, vol. 36, no. 10, pp. 1261–1267. doi: 10.1016/j.cageo.2010.04.005.
Pebesma E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci., 2004, vol. 30, no. 7, pp. 683–691. doi: 10.1016/j.cageo.2004.03.012.
Savel'ev A.A., Mukharamova S.S., Pilyugin A.G., Chizhikova N.A. Geostatisticheskii analiz dannykh v ekologii i prirodopol'zovanii (s primineniem paketa R) [Geostatistical Data Analysis in Ecology and Environmental Management (Using the R Package)]. Kazan, Kazan. Univ., 2012. 120 p. (In Russian)
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2016.
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2016. Available at: http://qgis.osgeo.org.
McBratney A. Some considerations on methods for spatially aggregating and disaggregating soil information. Nutr. Cycling Agroecosyst., 1998, vol. 50, nos. 1–3, pp. 51–62. doi: 10.1023/A:1009778500412.
Hengl T. Finding the right pixel size. Comput. Geosci., 2006, vol. 32, no. 9, pp. 1283–1298. doi: 10.1016/j.cageo.2005.11.008.
Li J., Heap A. A Review of Spatial Interpolation Methods for Environmental Scientists: Geoscience Australia Record 2008/23. Canberra, Geosci. Aust., 2008. 154 p.
Bivand R., Pebesma E., Gomez-Rubio V. Applied Spatial Data Analysis with R. New York, Springer, 2013. 413 p. doi: 10.1007/978-1-4614-7618-4.
Samsonova V.P. Prostranstvennaya izmenchivost' pochvennykh svoistv: Na primere dernovo-podzolistykh pochv [Spatial Variability of Soil Properties: Based on Soddy Podzolic Soils]. Moscow, LKI, 2008. 160 p. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.