A.V. Zakharov
Kazan Federal University, Kazan, 420008 Russia
Kazan State Medical University, Kazan, 420012 Russia
E-mail: AnVZaharov@kpfu.ru
Received November 14, 2018
DOI: 10.26907/2542-064X.2019.2.245-254
For citation: Zakharov A.V. Elph: An open-source program for acquisition control and analysis of electrophysiological signals. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 2, pp. 245–254. doi: 10.26907/2542-064X.2019.2.245-254 (In Russian)
Abstract
The Elph program designed for acquisition and analysis of electrophysiological signals using an analog-to-digital converter LA‑2USB (Rudnev-Shelyaev, Russia) was described. This program has been implemented in various electrophysiological studies, including synchronous recordings of evoked electromyographic responses and muscle contractions, monitoring and continuous recording of membrane potential, as well as for detection, acquisition, and analysis of spontaneous and evoked neuronal action potentials and postsynaptic responses. In addition, as a software tool for LA‑2USB, the program enables to control TTL-compatible devices. It can also be used as a digital oscilloscope in a wider range of applications where a continuous or episodic recording of analogous signals is required.
Keywords: data acquisition, Elph, LA‑2USB device driving, digitization, digital oscilloscope
Acknowledgments. This work was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (project no. 6.5520.2017/9.10).
Figure Captions
Fig. 1. Home screen of the Elph program.
Fig. 2. Test signals recorded in the regimes of detection of the limiting thresholds of spontaneous responses (a, c) and “Oscillograph” (b, d). “Saw” parameters in b and d: peak-to-peak 3.1 V; cycle 50 ms. Horizontal lines show the limiting threshold for signal detection (1800 mV in b, 1500 mV in a, c, and d).
Fig. 3. Example of the recorded neuromuscular end-plate potentials in a mouse. Single evoked (a, on the left) and spontaneous (b, on the left) responses. The central areas represent the diagrams showing the amplitude curves of evoked and spontaneous signals, respectively. Right part – histogram of the signal amplitudes, which is updated as signals accumulate in the experiment (data provided by P.N. Grigor'ev, Kazan State Medical University).
Fig. 4. Example of the recorded myocardial contractility (ventricle preparation) in rats. Left part – single contractions in four preparations, recorded simultaneously. Right part – diagrams showing the amplitude of contractions in the corresponding preparations (data provided by N.N. Khaertdinov, Kazan Federal University).
References
Drake K.L., Wise K.D., Farraye J., Anderson D.J., BeMent S.L. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng., 1988, vol. 35, no. 9, pp. 719–732. doi: 10.1109/10.7273.
Bragin A., Hetke J., Wilson C.L., Anderson D.J., Engel J., Buzsбki G. Multiple site silicon-based probes for chronic recordings in freely moving rats: Implantation, recording and histological doi: 10.1016/s0165-0270(00)00193-x.
Mitrukhina O., Suchkov D., Khazipov R., Minlebaev M. Imprecise whisker map in the neonatal rat barrel cortex. Cereb Cortex, 2015, vol. 25, no. 10, pp. 3458–3467. doi: 10.1093/cercor/bhu169.
Leuthardt E.C., Schalk G., Wolpaw J.R., Ojemann J.G., Moran D.W. A brain-computer interface using electrocorticographic signals in humans. J. Neural. Eng., 2004, vol. 1, no. 2, pp. 63–71. doi: 10.1088/1741-2560/1/2/001.
Sasai-Sakuma T., Inoue Y. Differences in electroencephalographic findings among categories of narcolepsy-spectrum disorders. Sleep Med., 2015, vol. 16, no. 8, pp. 999–1005. doi: 10.1016/j.sleep.2015.01.022.
Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 1976, vol. 260, no. 5554, pp. 799–802. doi: 10.1038/260799a0.
Maki B.A., Cummings K.A., Paganelli M.A., Murthy S.E., Popescu G.K. One-channel cell-attached patch-clamp recording. J. Vis. Exp., 2014, vol. 88, art. e51629, pp. 1–10. doi: 10.3791/51629.
Valiullina F., Akhmetshina D., Nasretdinov A., Mukhtarov M., Valeeva G., Khazipov R., Rozov A. Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex. Front. Neural Circuits, 2016, vol. 10, art. 1, pp. 1–13. doi: 10.3389/fncir.2016.00001.
Jappy D., Valiullina F., Draguhn A., Rozov A. GABABR-dependent long-term depression at hippocampal synapses between CB1-positive interneurons and CA1 pyramidal cells. Front. Cell. Neurosci., 2016, vol. 10, art. 4, pp. 1–9. doi: 10.3389/fncel.2016.00004.
Giniatullin A., Petrov A., Giniatullin R. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction. Neuroscience, 2015, vol. 285, pp. 324–332. doi: 10.1016/j.neuroscience.2014.11.039.
Shakirzyanova A., Valeeva G., Giniatullin A., Naumenko N., Fulle S., Akulov A., Atalay M., Nikolsky E., Giniatullin R. Age-dependent action of reactive oxygen species on transmitter release in mammalian neuromuscular junctions. Neurobiol. Aging, 2016, vol. 38, pp. 73–81. doi: 10.1016/j.neurobiolaging.2015.10.023.
Petrov A.M., Kasimov M.R., Giniatullin A.R., Tarakanova O.I., Zefirov A.L. The role of cholesterol in the exo- and endocytosis of synaptic vesicles in frog motor nerve endings. Neurosci. Behav. Physiol., 2010, vol. 40, no. 8. pp. 894–901. doi: 10.1007/s11055-010-9338-9.
Zefirov A.L., Zakharov A.V., Mukhametzyanov R.D., Petrov A.M., Sitdikova G.F. The vesicle cycle in motor nerve endings of the mouse diaphragm. Neurosci. Behav. Physiol., 2009, vol. 39, no. 3, pp. 245–252. doi: 10.1007/s11055-009-9122-x.
Darios F., Wasser C., Shakirzyanova A., Giniatullin A., Goodman K., Munoz-Bravo J.L., Raingo J., Jorgacevski J., Kreft M., Zorec R., Rosa J.M., Gandia L., Gutierrez L.M., Binz T., Giniatullin R., Kavalali E.T., Davletov B. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron, 2009, vol. 62, no. 5, pp. 683–694. doi: 10.1016/j.neuron.2009.04.024.
Sitdikova G.F., Gerasimova E.V., Khaertdinov N.N., Zefirov A.L. The role of cyclic nucleotides in the effects of hydrogen sulfide on the release of a mediator in the neuromuscular synapse of a frog. Neurochem. J., 2009, vol. 3, no. 4, pp. 282–287. doi: 10.1134/S1819712409040072.
Sitdikova G.F., Khaertdinov N.N., Zefirov A.L. Role of calcium and potassium channels in effects of hydrogen sulfide on frog myocardial contractility. Bull. Exp. Biol. Med., 2011, vol. 151, no. 2, pp. 163–166. doi: 10.1007/s10517-011-1280-5.
Khaertdinov N.N., Akhmetshina D.R., Zefirov A.L., Sitdikova G.F. Hydrogen sulfide in regulation of frog myocardial contractility. Biochem. (Moscow) Suppl. Ser. A: Membr. Cell Biol., 2013, vol. 7, no. 1, pp. 52–57. doi: 10.1134/S1990747812030117.
Lifanova A.S., Khaertdinov N.N., Zakharov A.V., Gizzatullin A.R., Sitdikova G.F. The role of potassium channels in the negative inotropic effect of hydrogen sulfide in the mouse atrium. Geny Kletki, 2014, vol. 9, no. 3, pp. 94–98. (In Russian)
Khaertdinov N.N., Lifanova A.S., Gizzatullin A.R., Sitdikova G.F. The role of K(ATP)-channels in the effects of hydrogen sulfide on myocardial contractility of rat ventricles. Geny Kletki, 2015, vol. 10, no. 4, pp. 103–105. (In Russian)
Lifanova A., Khaertdinov N., Sitdikova G. Interplay between hydrogen sulfide and adrenergic and muscarinic receptors in the mouse atrium. BioNanoScience, 2017, vol. 7, no. 2, pp. 306–308. doi: 10.1007/s12668-016-0355-1.
The content is available under the license Creative Commons Attribution 4.0 License.