D.M. Afordoanyi a*, A. Toacegnitche a**, S.Z. Validov a,b***
aKazan Federal University, Kazan, 420008 Russia
bKazan State Agricultural University, Kazan, 420015 Russia
E-mail: *dafordoan@gmail.com, **toales6@gmail.com, ***szvalidov@kpfu.ru
Received May 29, 2018
DOI: 10.26907/2542-064X.2019.1.66-76
For citation: Afordoanyi D.M., Toacegnitche A., Validov S.Z. Changes in the copy number of class II transposons in Fusarium oxysporum f. sp. radicis-cucumerinum strain V03-2g and its derivatives with broadened phytopathogenicity. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 1, pp. 66–76. doi: 10.26907/2542-064X.2019.1.66-76. (In Russian)
Abstract
Phytopathogenic strains of Fusarium oxysporum can parasitize on more than 120 species of crops and ornamental plants posing a serious danger to world agriculture. The wide range of hosts can be evidence of fast changes in the genomes of F. oxysporum strains, thereby allowing them to invade new plant species. Since the sexual reproduction has not been shown yet for F. oxysporum, in both natural and laboratory conditions, the activity of transposable elements can be responsible for the fast evolution of host specificity in this species. This paper describes the changes in the number of class II transposons in the F. oxysporum f. sp. radicis-cucumerinum (Forc) strain V03-2g, pathogenic to cucumber and its derivatives, which developed pathogenicity towards tomato. Nine transposons of class II (Mimp1, Mimp2, Hornet1, Hornet2, Hornet3, Han, Marsu, Fot3, and Fot4) were followed using qPCR in the wild-type strain V03-2g and its derivatives. The results of the study demonstrate an increase in the copy number of all the studied transposons in the strain V03-2g maintained by the regular plating on laboratory media in a period of one year in comparison with the same strain kept frozen at –80 ?C. A decrease of the transposon copy number has been observed in two isolates, SB1 and SB2. In the SB3 isolates, the copy number of transposons increased. The data obtained demonstrate that changes in the transposon copy number can occur under different conditions relatively in a short time and can be the basis for the variability of F. oxysporum strains.
Keywords: Fusarium oxysporum, forma specialis, transposons, IGS, qPCR
Acknowledgments. The study was supported by the Ministry of Science and Higher Education of the Russian Federation. Subsidy agreement no. 14.610.21.0017. Project no. RFMEFI61017X0017.
References
1. Mazzeo M.F., Cacace G., Ferriello F., Puopolo G., Zoina A., Ercolano M.R., Siciliano R.A. Proteomic investigation of response to forl infection in tomato roots. Plant Physiol. Biochem., 2014, vol. 74, pp. 42–49. doi: 10.1016/j.plaphy.2013.10.031.
2. Michielse C.B., Rep M. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol., 2009, vol. 10, no. 3, pp. 311–324. doi: 10.1111/j.1364-3703.2009.00538.x.
3. Bani M., Rispail N., Evidente A., Rubiales D., Cimmino A. Identification of the main toxins isolated from Fusarium oxysporum f. sp. pisi race 2 and their relation with isolatesʼ pathogenicity. J. Agric. Food Chem., 2014, vol. 62, no. 12, pp. 2574–2580. doi: 10.1021/jf405530g.
4. Fourie G., Steenkamp E.T., Ploetz R.C., Gordon T.R., Viljoen A. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect., Genet. Evol., 2011, vol. 11, no. 3, pp. 533–542. doi: 10.1016/j.meegid.2011.01.012.
5. Ma L.J., Geiser D.M., Proctor R.H., Rooney A.P., OʼDonnell K., Trail F., Gardiner D.M., Manners J.M., Kazan K. Fusarium pathogenomics. Annu. Rev. Microbiol., 2013, vol. 67, pp. 399–416. doi: 10.1146/annurev-micro-092412-155650.
6. Daviиre J.M., Langin T., Daboussi M.J. Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome. Fungal Genet. Biol., 2001, vol. 34, no. 3, pp. 177–192. doi: 10.1006/fgbi.2001.1296.
7. Kashiwa T., Suzuki T., Sato A., Akai K., Teraoka T., Komatsu K., Arie T. A new biotype of Fusarium oxysporum f. sp. lycopersici race 2 emerged by a transposon-driven mutation of avirulence gene AVR1. FEMS Microbiol. Lett., 2016, vol. 363, no. 14, art. fnw132, pp. 1–6. doi: 10.1093/femsle/fnw132.
8. Validov S.Z., Kamilova F.D., Lugtenberg B.J. Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection. Microb. Biotechnol., 2011, vol. 4, no. 1, pp. 82–88. doi: 10.1111/j.1751-7915.2010.00214.x.
9. Lievens B., van Baarlen P., Verreth C., van Kerckhove S., Rep M., Thomma B.P. Evolutionary relationships between Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici isolates inferred from mating type, elongation factor-1alpha and exopolygalacturonase sequences. Mycol. Res., 2009, vol. 113, no. 10, pp. 1181–1191. doi: 10.1016/j.mycres.2009.07.019.
10. Hua-Van A., Daviиre J.M., Kaper F., Langin T., Daboussi M.J. Genome organization in Fusarium oxysporum: Clusters of class II transposons. Curr. Genet., 2000, vol. 37, no. 5, pp. 339–347. doi: 10.1007/s002940050537.
11. Carr P.D., Tuckwell D., Hey P.M., Simon L., dʼEnfert C., Birch M., Oliver J.D., Bromley M.J. The transposon impala is activated by low temperatures: Use of a controlled transposition system to identify genes critical for viability of Aspergillus fumigatus. Eukaryotic Cell, 2010, vol. 9, no. 3, pp. 438–448. doi: 10.1128/EC.00324-09.
12. Rep M., van der Does H.C., Cornelissen B.J. Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation. Fungal Genet. Biol., 2005, vol. 42, no. 6, pp. 546–553. doi: 10.1016/j.fgb.2005.03.007.
13. Inami K., Yoshioka-Akiyama C., Morita Y., Yamasaki M., Teraoka T., Arie T. A genetic mechanism for emergence of races in Fusarium oxysporum f. sp. lycopersici: Inactivation of avirulence gene AVR1 by transposon insertion. PLoS One, 2012, vol. 7, no. 8, art. e44101, pp. 1–10. doi: 10.1371/journal.pone.0044101.
The content is available under the license Creative Commons Attribution 4.0 License.