P.P. Kobchikova*, Yu.O. Zgadzay**, S.V. Efimov***, V.V. Klochkov****
Kazan Federal University, Kazan, 420008 Russia
E-mail: *pollymoon@ya.ru, **yurchubuk@yandex.ru, ***Sergej.Efimov@kpfu.ru, ****Vladimir.Klochkov@kpfu.ru
Received January 28, 2019
DOI: 10.26907/2542-064X.2019.1.56-65
For citation: Kobchikova P.P., Zgadzay Yu.O., Efimov S.V., Klochkov V.V. Comparison of the cyclosporine variants A and D by NMR spectroscopy. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 1, pp. 56–65. doi: 10.26907/2542-064X.2019.1.56-65. (In Russian)
Abstract
A natural variant of cyclosporine A, cyclosporine D, has been studied using high-resolution NMR spectroscopy in a non-polar solution (chloroform). A complete assignment of the 1H and 13C NMR signals has been made. A comparative analysis of the obtained spectra with the data on cyclosporine A has revealed certain differences between these two peptides, which are most noticeable in the chemical shifts of the atoms of the main chain of residues 5, 8 and the appearance of the hydrogen bond in residue 1. Cyclosporine D is slightly different from CsA in its spectral parameters, but it shows practically no immunological activity. The presented results fill in the gap in the NMR data for cyclosporine variants other than CsA and provide more details about the differences between the peptide variants that may be responsible for their different biological activity.
Keywords: NMR, cyclosporine, CsA, CsD, backbone chemical shifts, hydrogen bond
Acknowledgements. The work was supported by the Russian Science Foundation (project no. 18-73-10088). The equipment of the Center of Shared Facilities for Physical and Chemical Research of Substances and Materials was used.
References
Hodge K.T., Krasnoff S.B., Humber R.A. Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia, 1996, vol. 88, pp. 715–719.
Sung G.-H., Hywel-Jones N.L., Sung J.-M., Luangsa-Ard J.J., Shrestha B., Spatafora J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol., 2007, vol. 57, pp. 5–59. doi: 10.3114/sim.2007.57.01.
Lawen A., Zocher R. Cyclosporin synthetase: The most complex peptide synthesizing multienzyme polypeptide so far described. J. Biol. Chem., 1990, vol. 265, no. 19, pp. 11355–11360.
Hoppert M., Gentzsch C., Schörgendorfer K. Structure and localization of cyclosporin synthetase, the key enzyme of cyclosporin biosynthesis in Tolypocladium inflatum. Arch. Microbiol., 2001, vol. 176, no. 4, pp. 285–293. doi: 10.1007/s002030100324.
Survase S.A., Kagliwal L.D., Annapure U.S., Singhal R.S. Cyclosporin A – A review on fermentative production, downstream processing and pharmacological applications. Biotechnol. Adv., 2011, vol. 29, no. 4, pp. 418–435. doi: 10.1016/j.biotechadv.2011.03.004.
Blokhin D.S., Efimov S.V., Klochkov A.V., Yulmetov A.R., Filippov A.V., Antzutkin O.N., Spatial structure of the decapeptide Val-Ile-Lys-Lys-Ser-Thr-Ala-Leu-Leu-Gly in water and in a complex with sodium dodecyl sulfate micelles. Appl. Magn. Reson., 2011, vol. 41, nos. 2–4, pp. 267–282. doi: 10.1007/s00723-011-0257-x.
Usachev K.S., Filippov A.V., Khairutdinov B.I., Antzutkin O.N., Klochkov V.V. NMR structure of the arctic mutation of the alzheimer's Aβ(1-40) peptide docked to SDS micelles. J. Mol. Struct., 2014, vol. 1076, pp. 518–523. doi: 10.1016/j.molstruc.2014.08.030.
Usachev K.S., Filippov A.V., Antzutkin O.N., Klochkov V.V. A combination of the RDC method and NOESY NMR spectroscopy for structural determination of the Alzheimer's amyloid Aβ10-35 peptide in solution and in SDS micelles. Eur. Biophys. J., 2013, vol. 42, nos. 11–12, pp. 803–810. doi: 10.1007/s00249-013-0928-7.
Klochkov A.V., Khairutdinov B.I., Tagirov M.S., Klochkov V.V. Determination of the spatial structure of glutathione by residual dipolar coupling analysis. Magn. Res. Chem., 2005, vol. 43, no. 11, pp. 948–951. doi: 10.1002/mrc.1650.
Kessler H., Loosli H.-R., Oschkinat H. Peptide conformations. Part 30. Assignment of the 1H-, 13C-, and 15N NMR spectra of cyclosporin A in CDCl3 and C6D6 by a combination of homo- and heteronuclear two-dimensional techniques. Helv. Chim. Acta, 1985, vol. 68, no. 3, pp. 661–681. doi: 10.1002/hlca.19850680318.
Loosli H.-R., Kessler H., Oschkinat H., Weber H.-P., Petcher T.J., Widmer A. Peptide conformations. Part 31. The conformation of cyclosporin a in the crystal and in solution. Helv. Chim. Acta, 1985, vol. 68, no. 3, pp. 682–704. doi: 10.1002/hlca.19850680319.
Efimov S.V., Karataeva F.Kh., Aganov A.V., Berger S., Klochkov V.V. Spatial structure of cyclosporin A and insight into its flexibility. J. Mol. Struct., 2013, vol. 1036, pp. 298–304. doi: 10.1016/j.molstruc.2012.11.005.
Bodack L.A., Freedman T.B., Chowdhry B.Z., Nafie L.A. Solution conformations of cyclosporins and magnesium-cyclosporin complexes determined by vibrational circular dichroism. Biopolymers, 2004, vol. 73, no. 2, pp. 163–177. doi: 10.1002/bip.10513.
Sadeg N., Pham-Huy C., Claude J.-R., Rucay P., Bismuth H., Righenzi S., Halle-Pannenko O., In vitro and in vivo comparative studies on immunosuppressive properties of cyclosporines A, C, D and metabolites M1, M17 and M21. Immunopharmacol. Immunotoxicol., 1993, vol. 15, nos. 2–3, pp. 163–177.
Khodov I.A., Efimov S.V., Klochkov V.V., Alper G.A., Batista de Carvalho L.A.E. Determination of preferred conformations of ibuprofen in chloroform by 2D NOE spectroscopy. Eur. J. Pharm. Sci., 2014, vol. 65, pp. 65–73. doi: 10.1016/j.ejps.2014.08.005.
The content is available under the license Creative Commons Attribution 4.0 License.