A.M. Bikchentaev
Kazan Federal University, Kazan, 420008 Russia
E-mail: Airat.Bikchentaev@kpfu.ru
Received October 12, 2017
Abstract
Let M be a von Neumann algebra of operators on a Hilbert space H and τ be a faithful normal semifinite trace on M. Let μt(T), t > 0, be a rearrangement of a τ-measurable operator T. Let us consider a τ-measurable operator A, such that μt(A) > 0 for all t > 0 and assume that μ2t(A) / μt(A) →1 as t→∞. Let a τ-compact operator S be so that the operator I+S is right invertible, where I is the unit of M. Then, for a τ-measurable operator B, such that A=B(I+S), we have μt(A) / μt(B) →1 as t→∞. It is an analog of the M.G. Krein theorem (for M=B(H) and τ=tr, theorem 11.4, ch. V [Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. In: Translations of Mathematical Monographs. Vol. 18. Providence, R.I., Amer. Math. Soc., 1969. 378 p.] for τ-measurable operators.
Keywords: Hilbert space, von Neumann algebra, normal trace, τ-measurable operator, distribution function, rearrangement, τ-compact operator
Acknowledgements. This work was supported by subsidies allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (projects nos. 1.1515.2017/4.6 and 1.9773.2017/8.9).
References
1. Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. In: Translations of Mathematical Monographs. Vol. 18. Providence, R.I., Amer. Math. Soc., 1969. 378 p.
2. Segal I.E. A non-commutative extension of abstract integration. Ann. Math., 1953, vol. 57, no. 3, pp. 401–457. doi: 10.2307/1969729.
3. Nelson E. Notes on non-commutative integration. J. Funct. Anal., 1974, vol. 15, no. 2, pp. 103–116. doi: 10.1016/0022-1236(74)90014-7.
4. Yeadon F.J. Non-commutative Lp-spaces. Math. Proc. Cambridge Philos. Soc., 1975, vol. 77, no. 1, pp. 91–102. doi: 10.1017/S0305004100049434.
5. Ovchinnikov V.I. Symmetric spaces of measurable operators, Dokl. Akad. Nauk SSSR, 1970, vol. 191, no. 4, pp. 769–771. (In Russian)
6. Fack T., Kosaki H. Generalized s-numbers of τ-measurable operators. Pac. J. Math., 1986, vol. 123, no. 2, pp. 269–300.
7. Bikchentaev A.M. On normal τ-measurable operators affiliated with semifinite von Neumann algebras. Math. Notes, 2014, vol. 96, nos. 3–4, pp. 332–341. doi: 10.1134/S0001434614090053.
8. Matsaev V.I., Mogul'ski E.Z. On the possibility of weak perturbation of a complete operator up to a Volterra operator. Dokl. Akad. Nauk SSSR, 1972, vol. 207, no. 3, pp. 534–537. (In Russian)
9. Antonevich A.B. Linear functional equations. Operator Approach. Basel, Birkhuser, 1996. viii, 183 p.
10. Krein S.G., Petunin Ju.I., Semenov E.M. Interpolation of linear operators. In: Translations of Mathematical Monographs. Vol. 54. Providence, R.I., Amer. Math. Soc., 1982. 375 p.
For citation: Bikchentaev A.M. On an analog of the M.G. Krein theorem for measurable operators. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 2, pp. 243–249.
The content is available under the license Creative Commons Attribution 4.0 License.