N.V. Feoktistova a*, A.M. Mardanova a**, M.T. Lutfullin a***, L.M. Bogomolnaya b****, M.R. Sharipova a*****
aKazan Federal University, Kazan, 420008 Russia
bTexas A&M University, Bryan, 8447 USA
E-mail: *nfeoktis@mail.ru, **mardanovaayslu@mail.ru, ***lutfullin.marat2012@yandex.ru, ****Bogomolnaya@medicine.tamhsc.edu, *****marsharipova@gmail.com
Received June 4, 2018
Abstract
This work describes the development of microbial biopreparations – fodder enzymes and enzyme-probiotic complexes – for solving the relevant problems of industrial poultry farming. The characteristics of non-starch polysaccharides (NSP) of grain feeds have been discussed. The mechanisms of NSP antinutritive action, which interfere with the assimilation of nutrients and energy of grain feeds have been analyzed. The negative effect of NSP on intestinal microbiota has been shown. The mechanisms of positive effects of exogenous microbial NSP enzymes on both intestinal microbiota and assimilation of feeds have been investigated. The expediency of complex compositions containing NSP enzymes, amylases, and proteases has been proved. The anti-nutritive properties of phytates contained in poultry feeds and the expediency of using microbial phytases as fodder enzymes for poultry farming have been shown. The prospects of enzyme-probiotic complexes as an alternative to the use of antibiotics has been analyzed.
Keywords: poultry farming, non-starch polysaccharides, phytates, NSP enzymes, proteases, phytases, probiotics, microbiota
Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and supported by the Russian Science Foundation (project no. 16-16-04062).
Figure Captions
Fig. 1. Phytic acid IP6 structure [13].
References
FAO (Food and Agriculture Organization). 2014. FAOSTAT online database. Available at: http://faostat.fao.org/.
Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinence, 2010, vol. 327, pp. 812–818. doi: 10.1126/science.1185383.
Kiarie E., Romero L.F., Nyachoti C.M. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev., 2013, vol. 26, no. 1, pp. 71–88. doi: 10.1017/S0954422413000048.
Park Y.H., Hamidon F., Rajangan Ch., Soh K.P., Gan Ch.Yu., Lim Th.S., Abdullah W.N.W., Lian J. Food Sci. Anim. Resour., 2016, vol. 36, no. 5, pp. 567–576. doi: 10.5851/kosfa.2016.36.5.567.
Gadde U., Kim W.H., Oh S.T., Lillehoj H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev., 2017, vol. 18, no. 1, pp. 26–45. doi: 10.1017/S1466252316000207.
Knudsen K.E. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci., 2014, vol. 93, no. 9, pp. 2380–2393. doi: 10.3382/ps.2014-03902.
Kebreab E., Liedke A., Caro D., Deimling S., Binder M., Finkbeiner M. Environmental impact of using specialty feed ingredients in swine and poultry production: A life cycle assessment. J. Anim. Sci., 2016, vol. 94, no. 6, pp. 2664–2681. doi: 10.2527/jas.2015-9036.
Fisinin V.I., Egorov I.A. Current approaches to commercial poultry feeding. Ptitsa Ptitseprod., 2015, no. 3, pp. 27–29. (In Russian)
Romero L.F., Sands J.S., Indrakumar S.E., Plumstead P.W., Dalsgaard S., Ravindran V. Contribution of protein, starch, and fat to the apparent ileal digestible energy of corn- and wheat-based broiler diets in response to exogenous xylanase and amylase without or with protease. Poult. Sci., 2014, vol. 93, no. 10, pp. 2501–2513. doi: 10.3382/ps.2013-03789.
Fisinin V.I., Egorov I.A., Lenkova T.Kh. Using non-traditional feeds in poultry diet. Ptitsa Ptitseprod., 2016, no. 4, pp. 14–17. (In Russian)
Ravindran V., Son J.-H. Feed enzyme technology: Present status and future developments. Recent Pat. Food Nutr. Agric., 2011, vol. 3, no. 2, pp. 102–109.
Adeola O., Cowieson A.J. Board-invited review: Оpportunities and challenges in using exogenous enzymes to improve non-ruminant animal production. J. Anim. Sci., 2011, vol. 89, no. 10, pp. 3189–3218. doi: 10.2527/jas.2010-3715.
Dersjant-Li Y., Awati A., Schulze H., Partridge G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric., 2015, vol. 95, no. 5, pp. 878–896. doi: 10.1002/jsfa.6998.
Diaz D. M., Morlacchini F., Masoero M., Moschini G., Fusconi G. Pea seeds (Pisum sativum), faba beans (Vicia faba var. minor) and lupin seeds (Lupinus albus var. multitalia) as protein sources in broiler diets: effect of extrusion on growth performance. Ital. J. Anim. Sci., 2006, vol. 5, pp. 43–53.
Kundyshev P., Landshaft M., Kuznetsov A. Ways to improve the efficiency of poultry farming. Ptitsevodstvo, 2013, vol. 6, pp. 19–22. (In Russian)
Shewry P.R., Hawkesford M.J., Piironen V., Lampi A.M., Gebruers K., Boros D., Andersson A.A., Aman P., Rakszegi M., Bedo Z., Ward J.L. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem., 2013, vol. 61, no. 35, pp. 8295–8303. doi: 10.1021/jf3054092.
Dornez E., Gebruers K.I., Joye J.B., Ketelaere De.J., Lenartz C., Massau B., Bodson J., Delcour A.C., Courtin M. Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J. Cereal Sci., 2008, vol. 47, no. 2, pp. 180–189. doi: 10.1016/j.jcs.2007.03.008.
Khadem A., Lourenzo M., Delezie E., Maertens L., Goderis A., Mombaerts R., Höfte M., Eeckhaut V., Van Immerseel F., Janssens G.P. Does release of encapsulated nutrients have an important role in the efficacy of xylanase in broilers? Poult. Sci., 2016, vol. 95, no. 5, pp. 1066–1076. doi: 10.3382/ps/pew002.
Timbermont L., Haesebrouck F., Ducatelle R., Van Immerseel F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol., 2011, vol. 40, no. 4, pp. 341–347. doi: 10.1080/03079457.2011.590967.
Bielke L.R., Hargis B.M., Latorre J.D. Impact of enteric health and mucosal permeability on skeletal health and lameness in poultry. Adv. Exp. Med. Biol., 2017, vol. 1033, pp. 185–197. doi: 10.1007/978-3-319-66653-2_9.
Lynd L.R., Weimer P.J., van Zyl W.H., Pretorius I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.
Sharma A., Tewari R., Rana S.S., Soni R., Soni S.K. Cellulases: Classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol., 2016, vol. 179, no. 8, pp. 1346–1380. doi: 10.1007/s12010-016-2070-3.
Kölln M., Weiβ H., Hankel J., Kamphues J. Effects of a carbohydrase complex added in different inclusion rates in feeds for broilers on growth performance, digesta viscosity and foot pad health. J. Anim. Physiol. Anim. Nutr. (Berlin), 2017, vol. 101, suppl. 1. 105–109. doi: 10.1111/jpn.12701.
Yuan L., Wang M., Zhang X., Wang Z. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers. PloS One, 2017, vol. 12, no. 3, art. e0173941, pp. 1–13. doi: 10.1371/journal.pone.0173941.
Latorre J.D., Hernandes-Velasco X., Kutappan V.A., Wolfenden R.E., Vicente J.L., Wolfenden A.D., Bielke L.R., Prado-Rebolledo O.F., Morales E., Hargis B.M., Tellez G. Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front Vet. Sci., 2015, vol. 2, art. 25, pp. 1–8. doi: 10.3389/fvets.2015.00025.
Bedford M.R., Cowieson A.J. Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci. Technol., 2012, vol. 173, nos. 1–2, pp. 76–85. doi: 10.1016/j.anifeedsci.2011.12.018.
Amerah A.M., Mathis G., Hofacre C.L. Effect of xylanase and a blend of essential oils on performance and Salmonella colonization of broiler chickens challenged with Salmonella Heidelberg. Poult. Sci., 2012, vol. 91, no. 4, pp. 943–947. doi: 10.3382/ps.2011-01922.
Shastak E.V. In vitro activity of NSP enzymes does not ensure their efficiency. Ptitsevodstvo, 2016, no. 10, pp. 10–14. (In Russian)
Kryukov V.S. Estimating the quality of feed enzymatic additives. Ptitsevodstvo, 2016, no. 10, pp. 2–7. (In Russian)
Contesini F.J., Melo R.R., Sato H.H. An overview of Bacillus proteases: From production to application. Crit. Rev. Biotechnol., 2018, vol. 38, no. 3, pp. 321–334. doi: 10.1080/07388551.2017.1354354.
Kaczmarek S.A., Rogiewicz A., Mogielnicka M., Rutkowski A., Jones R.O., Slominski B.A. The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poult. Sci., 2014, vol. 93, no. 7, pp. 1745–1753. doi: 10.3382/ps.2013-03739.
Yuan L., Wang S.Q., Wang Z.X., Zhu H., Huang K. Effects of exogenous protease supplementation on endogenous trypsin activity and gene expression in broilers. Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 13633–13641. doi: 10.4238/2015.October.28.25.
Svihus B., Uhlen A.K., Harstad O.M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Technol., 2005, vol. 122, nos. 3–4, pp. 303–320. doi: 10.1016/j.anifeedsci.2005.02.025.
Olukosi O.A., Beeson L.A., Englist K., Romero L.F. Effects of exogenous proteases without or with carbohydrases on nutrient digestibility and disappearance of non-starch polysaccharides in broiler chickens. Poult. Sci., 2015, vol. 94, no. 11, pp. 2662–2699. doi: 10.3382/ps/pev260.
Amerah A.M., Romero L.F., Awati A., Ravindran V. Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poult. Sci., 2017, vol. 96, no. 4, pp. 807–816. doi: 10.3382/ps/pew297.
Lenkova T.N., Egorova T.A., Yatsyshina M.M., Sysoeva I.G., Zevakova V.K. Leguminous crops in compound feed for broilers. Ptitsa Ptitseprod., 2016, no. 4, pp. 17–19. (In Russian)
Iqbal Z., Roberts J., Perez-Maldonado R.A, Goodarzi Boroojeni F., Swick R.A., Ruhnke I. Pasture, multi-enzymes, benzoic acid and essential oils positively influence performance, intestinal organ weight and egg quality in free-range laying hens. Br. Poult. Sci., 2018, vol. 59, no. 2, pp. 180–189. doi: 10.1080/00071668.2017.1403566.
Romero L.F., Parsons C.M., Utterback P.L., Plumstead P.W., Ravindran V. Comparative effects of dietary carbohydrases without or with protease on the ileal digestibility of energy and amino acids and AMEn in young broilers. Anim. Feed Sci. Technol., 2013, vol. 181, nos. 1–4, pp. 35–44. doi: 10.1016/j.anifeedsci.2013.02.001.
Woyengo T.A., Nyachoti C.M. Review: Anti-nutritional effects of phytic acid in diets for pigs and poultry – current knowledge and directions for future research. Can. J. Anim. Sci., 2013, vol. 93, no. 1, pp. 9–21. doi: 10.4141/cjas2012-017.
Balaban N.P., Suleimanova A.D., Valeeva L.R., Shakirov E.V., Sharipova M.R. Structural charac 8, pp. 785–793. doi: 10.1134/S0006297916080010.
Bohn L., Meyer A.S., Rasmussen S.K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ. Sci. B, 2008, vol. 9, no. 3, pp. 165–191. doi: 10.1631/jzus.B0710640.
Mukhametzyanova A.D., Akhmetova A.I., Sharipova M.R. Microorganisms as phytase producers. Microbiology, 2012, vol. 81, no. 3, pp. 267–275. doi: 10.1134/S0026261712030095.
Marounek M., Skřivan M., Rosero O., Rop O. Intestinal and total tract phytate digestibility and phytase activity in the digestive tract of hens fed a wheat-maize-soyabean diet. J. Anim. Feed Sci., 2010, vol. 19, no. 3, pp. 430–439. doi: 10.22358/jafs/66305/2010.
Kebreab E., Hansen V., Strathe A.B. Animal production for efficient phosphate utilization: From 877. doi: 10.1016/j.copbio.2012.06.001.
Lei X.G., Weaver J.D., Mullaney E., Ullah A.H., Azain M.J. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci., 2013, vol. 1, pp. 283–309. doi: 10.1146/annurev-animal-031412-103717.
Vybornaya T.V., Yuzbashev T.V., Fedorov A.S., Yuzbasheva E.Yu., Larina A.S., Sineokii S.P. Yarrowia lipolytica recombinant yeast strain producing phytase. Patent RF no. 2504579 S2, 2014. (In Russian)
Gordeeva T.L., Borshchevskaya L.N., Sineokii S.P. Mutant recombinant thermostable phytase (variants), DNA fragment encoding the indicated phytase (variants), Pichia pastoris strain producing this phytase (variants). Patent RF no. 2472855 S2, 2013. (In Russian)
Knap I., Knarreborg A., Leser T.D., Lunn B. Bacillus subtilis bacterial strain with high level of phytase (variants) production, the composition for feeding animals and the method of feeding animals. Patent RF no. 2506307 S2, 2014. (In Russian)
Ahmetova A.I., Nyamsuren Ch., Balaban N.P., Sharipova M.R. Isolation and characterization of a new bacillary phytase. Russ. J. Bioorg. Chem., 2013, vol. 39, no. 4, pp. 384–389. doi: 10.1134/S1068162013040031.
Woyengo T.A., Nyachoti C.M. Review: Supplementation of phytase and carbohydrases to diets for poultry. Can. J. Anim. Sci., 2011, vol. 91, no. 2, pp. 177–192. doi: 10.4141/cjas10081.
Amerah A.M., Plumstead P.W., Barnard L.P., Kumar A. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poult. Sci., 2014, vol. 93, no. 4, pp. 906–915. doi: 10.3382/ps.2013-03465.
Yu S., Cowieson A., Gilbert C., Plumstead P., Dalsgaard S. Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. J. Anim. Sci., 2012, vol. 90, no. 6, pp. 1824–1832. doi: 10.2527/jas.2011-3866.
Cowieson A.J., Ravindran V. Sensitivity of broiler starters to three doses of an enzyme cocktail in maize-based diets. Br. Poult. Sci., 2008, vol. 49, no. 3, pp. 340–346. doi: 10.1080/00071660802126669.
Wu D., Wu S.B., Choct M., Swick R.A. Performance, intestinal microflora, and amino acid digestibility altered by exogenous enzymes in broilers fed wheat- or sorghum-based diets. J. Anim. Sci., 2017, vol. 95, no. 2, pp. 740–751. doi: 10.2527/jas.2016.0411.
Ptak A., Bedford M.R., Świątkiewicz S., Žyła K., Józefiak D. Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS One, 2015, vol. 10, no. 3, art. e0119770, pp. 1–15. doi: 10.1371/journal.pone.0119770.
Borda-Molina D., Vital M., Sommerfeld V., Rodehutscord M., Camarinha-Silva A. Insights into broilers' gut microbiota fed with phosphorus, calcium, and phytase supplemented diets. Front. Microbiol., 2016, vol. 7, art. 2033, pp. 1–13. doi: 10.3389/fmicb.2016.02033.
Gao C., Ma Q., Zhao L., Zhang J., Ji C. Effect of dietary phytase transgenic corn on physiological characteristics and the fate of recombinant plant DNA in laying hens. Asian-Australas. J. Anim. Sci., 2014, vol. 27, no. 1, pp. 77–82. doi: 10.5713/ajas.2013.13265.
Conley D.J., Paerl H.W., Howarth R.W. Controlling eutrophication: Nitrogen and phosphorus. Science, 2009, vol. 323, pp. 1014–1015. doi: 10.1126/science.1167755.
Tubiello F.N., Salvatore M., Rossi S., Ferrara A., Fitton N., Smith P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett., 2013, vol. 8, no. 1, art. 015009, pp. 1–10. doi: 10.1088/1748-9326/8/1/015009.
Latorre J.D., Hernandez-Velasco X., Wolfenden R.E., Vicente J.L., Wolfenden A.D., Menconi A., Bielke L.R., Hargis B.M., Tellez G. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Front. Vet. Sci., 2016, vol. 3, art. 95, pp. 1–9. doi: 10.3389/fvets.2016.00095.
Koshchaev A.G. The efficiency of the Batsell and Monosporin additives in broiler breeding. Veterinariya, 2007, no. 1, pp. 16–17. (In Russian)
Grudinina T.N., Laptev G.Yu., Prokop'eva V.I., Soldatova V.V., Provorov E.L. Bacillus pantothenticus 1-85 strain for granulated fodders. Patent RF no. 2235772 S1, 2004. (In Russian)
Farhat-Khemakhem A., Blibech M., Boukhris I., Makni M., Chouayekh H. Assessment of the potential of the multi-enzyme producer Bacillus amyloliquefaciens US573 as alternative feed additive. J. Sci. Food. Agric., 2018, vol. 98, no. 3, pp. 1208–1215. doi: 10.1002/jsfa.8574.
For citation: Feoktistova N.V., Mardanova A.M., Lutfullin M.T., Bogomolnaya L.M., Sharipova M.R. Microbial preparations in poultry farming. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 3, pp. 395–418. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.