T.V. Baltina a, D.I. Silantyeva a, E.Yu. Loban a, M.V. Raimova a, I.A. Lavrov a,b
aKazan Federal University, Kazan, 420008 Russia
bMayo Clinic, Rochester, MN, 55905 USA
Received June 22, 2018
Full text PDF
Abstract
The aim of this study was to evaluate possible neuroprotective effects of local hypothermia on the functional state of the spinal motor centers of the calf muscles after a contusion injury of the spinal cord (SCI) in rats. It was assumed that local hypothermia can decrease the secondary damage of SCI and can be considered as a way to treat SCI. The experiments were carried out on 49 adult Wistar rats with the weight of 250–300 g. All procedures were performed in accordance with the bioethics rules. SCI was performed in the region of Th8–Th9 vertebrae. The analysis of the motor functions assessed in the open field test and of the parameters of the motor evoked potentials of hindlimb muscles induced by epidural stimulation of the spinal cord was carried out during a month period after the injury. It was shown that the locomotor ability of rats in the open field test did not differ between the group with SCI and the group with local hypothermia. The amplitude of motor evoked potentials of the calf muscles significantly decreased and the thresholds of inducing these potentials increased in the group with hypothermia. Thus, the results suggest that local hypothermia after SCI can delay the development of functional excitation of the neuro-motor pathways induced by SCI. The obtained data can be useful for developing new therapeutic approaches, which are necessary to delay the pathophysiological processes associated with the secondary damage, as well as to limit the expression of neurological dysfunction induced by SCI.
Keywords: spinal cord injury, motor evoked potentials, epidural stimulation, locomotor activity, local hypothermia
Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 17-04-01746).
References
- Stahel P.F., VanderHeiden T., Finn M.A. Management strategies for acute spinal cord injury: current options and future perspectives. Curr. Opin. Crit. Care, 2012, vol. 18, no. 6, pp. 651–660. doi: 10.1097/MCC.0b013e32835a0e54.
- Delamarter R.B., Sherman J., Carr J.B. Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J. Bone Jt. Surg., 1995, vol. 77, no. 7, pp. 1042–1049. doi: 10.2106/00004623-199507000-00010.
- Carlson G.D., Gorden C.D., Oliff H.S., Pillai J.J., LaManna J.C. Sustained spinal cord compression: Part I: Time-dependent effect on long-term pathophysiology. J. Bone Jt. Surg., 2003, vol. 85, no. 1, pp. 86–94.
- Fehlings M.G., Tetreault L.A., Wilson J.R., Kwon B.K. Burns A.S., Martin A.R., Hawryluk G., Harrop S. Clinical practice guideline for the management of acute spinal cord injury: Introduction, rationale, and scope. Global Spine J., 2017, vol. 7, suppl. 3, pp. 84S–94S. doi: 10.1177/2192568217703387.
- Papadopoulos E.C., Boachie-Adjei O., Hess W.F., Sanchez Perez-Grueso F.J., Pellisé F., Gupta M., Lonner B., Paonessa K., Faloon M., Cunningham M.E., Kim H.J., Mendelow M., Sacramento C., Yazici M., Foundation of Orthopedics and Complex Spine, New York, NY. Early outcomes and complications of posterior vertebral column resection. Spine J., 2015, vol. 15, no. 5, pp. 983–991. doi: 10.1016/j.spinee.2013.03.023.
- Pointillart V., Petitjean M.E., Wiart L., Vital J.M., Lassié P., Thicoipé M., Dabadie P. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord, 2000, vol. 38, no. 2, pp. 71–76. doi: 10.1038/sj.sc.3100962.
- Bethea J.R., Dietrich W.D. Targeting the host inflammatory response in traumatic spinal cord injury. Curr. Opin. Neurol., 2002, vol. 15, no. 3, pp. 355–360. doi: 10.1097/00019052-200206000-00021.
- Steeves J.D., Kramer J.K., Fawcett J.W., Cragg J., Lammertse D.P., Blight A.R., Marino R.J., Ditunno J.F., Jr., Coleman W.P., Geisler F.H., Guest J., Jones L., Burns S., Schubert M., van Hedel H.J., Curt A., EMSCI Study Grup Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord, 2011, vol. 49, no. 2, pp. 257–265. doi: 10.1038/sc.2010.99.
- Evans L.T., Lollis S.S., Ball P.A. Management of acute spinal cord injury in the neurocritical care unit. Neurosurg. Clin. N. Am., 2013, vol. 24, no. 3, pp. 339–347. doi: 10.1016/j.nec.2013.02.007.
- Kim Y.H., Ha K.Y., Kim S.I. Spinal cord injury and related clinical trials. Clin. Orthop. Surg., 2017, vol. 9, no. 1, pp. 1–9. doi: 10.4055/cios.2017.9.1.1.
- Chatzipanteli K., Yanagawa Y., Marcillo A.E. Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J. Neurotrauma, 2000, vol. 17, no. 4, pp. 321–332. doi: 10.1089/neu.2000.17.321.
- Ha K.Y., Kim Y.H. Neuroprotective effect of moderate epidural hypothermia after spinal cord injury in rats. Spine, 2008, vol. 33, no. 19, pp. 2059–2065. doi: 10.1097/BRS.0b013e31818018f6.
- Bandschapp O., Iaizzo P.A. Induction of therapeutic hypothermia requires modulation of thermoregulatory defenses. Ther. Hypothermia Temp. Manage., 2011, vol. 1, no. 2, pp. 77–85. doi: 10.1089/ther.2010.0010.
- Morizane K., Ogata T., Morino T., Horiuchi H., Yamaoka G., Hino M., Miura H. A novel thermoelectric cooling device using Peltier modules for inducing local hypothermia of the spinal cord: The effect of local electrically controlled cooling for the treatment of spinal cord injuries in conscious rats. Neurosci. Res., 2012, vol. 72, no. 3, pp. 279–282. doi: 10.1016/j.neures.2011.12.003.
- Seo J.Y., Kim Y.H., Kim J.W. Effects of therapeutic hypothermia on apoptosis and autophagy after spinal cord injury in rats. Spine, 2015, vol. 40, no. 12, pp. 883–890. doi: 10.1097/BRS.0000000000000845.
- Choi H.A., Badjatia N., Mayer S.A. Hypothermia for acute brain injury – mechanisms and practical aspects. Nat. Rev. Neurol., 2012, vol. 8, no. 4, pp. 214–222. doi: 10.1038/nrneurol.2012.21.
- Bazley F.A., Pashai N., Kerr C.L., All A.H. The effects of local and general hypothermia on temperature profiles of the central nervous system following spinal cord injury in rats. Ther. Hypothermia Temp. Manage., 2014, vol. 4, no. 3, pp. 115–124. doi: 10.1089/ther.2014.0002.
- Vipin A., Kortelainen J., Al-Nashash H., Chua S.M., Thow X., Manivannan J., Astrid, Thankor N.V., Kerr C.L., All A.H. Prolonged local hypothermia has no long-term adverse effect on the spinal cord. Ther. Hypothermia Temp. Manage., 2015, vol. 5, no. 3, pp. 152–162. doi: 10.1089/ther.2015.0005.
- Roy R.R., Hutchison D.L., Pierotti D.J., Hodgson J.A., Edgerton V.R. EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J. Appl. Physiol., 1991, vol. 70, no. 6, pp. 2522–2529. doi: 10.1152/jappl.1991.70.6.2522.
- Anderson T. E. A controlled pneumatic technique for experimental spinal cord contusion. J. Neurosci. Methods, 1982, vol. 6, no. 4, pp. 327–333. doi: 10.1016/0165-0270(82)90033-4.
- Tumakaev R.F. Hypothermia of the spinal cord. Zh. Vopr. Neirokhir. Im. N. N. Burdenko, 2010, no. 2, pp. 51–53. (In Russian)
- Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma, 1995, vol. 12, no. 1, pp. 1–21. doi: 10.1089/neu.1995.12.1.
- Gerasimenko Y.P., Lavrov I.A., Courtine G., Ichiyama R., Dy C.J., Zhong H., Roy R.R., Edgerton V.R. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J. Neurosci. Methods, 2006, vol. 157, no. 2, pp. 253–263. doi: 10.1016/j.jneumeth.2006.05.004.
- Wang J., Pearse D.D. Therapeutic hypothermia in spinal cord injury: The status of its use and open questions. Int. J. Mol. Sci., 2015, vol. 16, no. 8, pp. 16848–16879. doi: 10.3390/ijms160816848.
- Dietrich W.D., Atkins C.M., Bramlett H.M. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J. Neurotrauma, 2009, vol. 26, no. 3, pp. 301–312. doi: 10.1089/neu.2008.0806.
- Dietrich W.D., Cappuccino A., Cappuccino H. Systemic hypothermia for the treatment of acute cervical spinal cord injury in sports. Curr. Sports Med. Rep., 2011, vol. 10, no. 1, pp. 50–54. doi: 10.1249/JSR.0b013e318205e0b3.
- Kwon B.K., Mann C., Sohn H.M., Hilibrand A.S., Phillips F.M., Wang J.C., Fehlings M.G., NASS Section on Biologics Hypothermia for spinal cord injury. Spine J., 2008, vol. 8, no. 6, pp. 859–874. doi: 10.1016/j.spinee.2007.12.006.
- Casas C.E., Herrera L.P., Prusmack C., Ruenes G., Marcillo A., Guest J.D. Effects of epidural hypothermic saline infusion on locomotor outcome and tissue preservation after moderate thoracic spinal cord contusion in rats. J. Neurosurg. Spine, 2005, vol. 2, no. 3, pp. 308–318. doi: 10.3171/spi.2005.2.3.0308.
- Mortazavi M.M., Verma K., Tubbs R.S., Theodore N. Non-pharmacological experimental treatments for spinal cord injury: A review. Childs Nerv. Syst., 2012, vol. 28, no. 12, pp. 2041–2045. doi: 10.1007/s00381-012-1889-3.
- Morochovic R., Chuda M., Talanova J., Cibur P., Kitka M., Vanicky I. Local transcutaneous cooling of the spinal cord in the rat: Effects on long-term outcomes after compression spinal cord injury. Int. J. Neurosci., 2008, vol. 118, no. 4, pp. 555–568. doi: 10.1080/00207450601123456.
- Dimar J.R. 2nd, Shields C.B., Zhang Y.P., Burke D.A., Raque G.H., Glassman S.D. The role of directly applied hypothermia in spinal cord injury. Spine, 2000, vol. 25, no. 18, pp. 2294–2302. doi: 10.1097/00007632-200009150-00006.
- Hiersemenzel L.P., Curt A., Dietz V. From spinal shock to spasticity: Neuronal adaptations to a spinal cord injury. Neurology, 2000, vol. 54, no. 8, pp. 1574–1582. doi: 10.1212/wnl.54.8.1574.
- Valero-Cabré A., Forés J., Navarro X. Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection. J. Neurophysiol., 2004, vol. 91, no. 6, pp. 2838–2848. doi: 10.1152/jn.01177.2003.
- Ashby P., Verrier M., Lightfoot E. Segmental reflex pathways in spinal shock and spinal spasticity in man. J. Neurol. Neurosurg. Psychiatry, 1974, vol. 37, no. 12, pp. 1352–1360. doi: 10.1136/jnnp.37.12.1352.
- LoPachin R.M., Gaughan C.L., Lehning E.J., Kaneko Y., Kelly T.M., Blight A. Experimental spinal cord injury: Spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. J. Neurophysiol., vol. 82, no. 5, pp. 2143–2153. doi: 10.1152/jn.1999.82.5.2143.
- Malmsten J. Time course of segmental reflex changes after chronic spinal cord hemisection in the rat. Acta Physiol. Scand., 1983, vol. 119, no. 4, pp. 435–443. doi: 10.1111/j.1748-1716.1983.tb07359.x.
- Chen X.Y., Feng-Chen K.C., Chen L., Stark D.M., Wolpaw J.R. Short-term and medium-term effects of spinal cord tract transections on soleus H-reflex in freely moving rats. J. Neurotrauma, 2001, vol. 18, no. 3, pp. 313–327. doi: 10.1089/08977150151070973.
- Hultborn H., Malmsten J. Changes in segmental reflexes following chronic spinal cord hemisection in the cat. I. Increased monosynaptic and polysynaptic ventral root discharges. Acta Physiol. Scand., 1983, vol. 119, no. 4, pp. 405–422. doi: 10.1111/j.1748-1716.1983.tb07357.x.
- Leis A.A., Kronenberg M.F., Stĕtkárová I., Paske W.C., Stokić D.S. Spinal motoneuron excitability after acute spinal cord injury in humans. Neurology, 1996, vol. 47, no. 1, pp. 231–237. doi: 10.1212/wnl.47.1.231.
- Taylor S., Ashby P., Verrier M. Neurophysiological changes following traumatic spinal lesions in man. J. Neurol. Neurosurg. Psychiatry, 1984, vol. 47, no. 10, pp. 1102–1108. doi: 10.1136/jnnp.47.10.1102.
- Calancie B., Broton J.G., Klose K.J., Traad M., Difini J., Ayyar D.R. Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man. Electroencephalogr. Clin. Neurophysiol., 1993, vol. 89, no. 3, pp. 177–186. doi: 10.1016/0168-5597(93)90131-8.
- Faist M., Ertel M., Berger W., Dietz V. Impaired modulation of quadriceps tendon jerk reflex during spastic gait: Differences between spinal and cerebral lesions. Brain, 1999, vol. 122, pt. 3, pp. 567–579. doi: 10.1093/brain/122.3.567.
- Nelson S.G., Collatos T.C., Niechaj A., and Mendell L.M. Immediate increase in Ia-motoneuron synaptic transmission caudal to spinal cord transaction. J. Neurophysiol., 1979, vol. 42, no. 3, pp. 655–664. doi: 10.1152/jn.1979.42.3.655.
- Lyden P.D., Krieger D., Yenari M., Dietrich W.D. Therapeutic hypothermia for acute stroke. Int. J. Stroke, 2006, vol. 1, no. 1, pp. 9–19. doi: 10.1111/j.1747-4949.2005.00011.x.
- Wang J., Pearse D.D. Therapeutic hypothermia in spinal cord injury: The status of its use and open questions. Int. J. Mol. Sci., 2015, vol. 16, no. 8, pp. 16848–16879. doi: 10.3390/ijms160816848.
- Hansebout R.R., Lamont R.N., Kamath M.V. The effects of local cooling on canine spinal cord blood flow. Can. J. Neurol. Sci., 1985, vol. 12, no. 2, pp. 83–87. doi: 10.1017/s0317167100046758.
- Kuluz J.W., Prado R., Chang J., Ginsberg M.D., Schleien C.L., Busto R. Selective brain cooling increases cortical cerebral blood flow in rats. Am. J. Physiol., 1993, vol. 265, no. 3, pt. 2, pp. H824–H827. doi: 10.1152/ajpheart.1993.265.3.H824.
- Barbosa M.O., Cristante A.F., Santos G.B., Ferreira R., Marcon R.M., Barros Filho T.E. Neuroprotective effect of epidural hypothermia after spinal cord lesion in rats. Clinics, 2014, vol. 69, no. 8, pp. 559–564. doi: 10.6061/clinics/2014(08)10.
- Dietrich W.D., Atkins C.M., Bramlett H.M. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J. Neurotrauma, 2009, vol. 26, no. 3, pp. 301–312. doi: 10.1089/neu.2008.0806.
- Maybhate A., Hu C., Bazley F.A., Yu Q., Thakor N.V., Kerr C.L. All A.H. Potential long-term benefits of acute hypothermia after spinal cord injury: Assessments with somatosensory-evoked potentials. Crit. Care Med., 2012, vol. 40, no. 2, pp. 573–579. doi: 10.1097/CCM.0b013e318232d97e.
For citation: Baltina T.V., Silantyeva D.I., Loban E.Yu., Raimova M.V., Lavrov I.A. Effects of local hypothermia on spinal cord injury in rats. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 4, pp. 630–644.
The content is available under the license Creative Commons Attribution 4.0 License.