A.R. Nasretdinov a, R.N. Khazipov a,b
a Kazan Federal University, Kazan, 420008 Russia
b INMED, Aix-Marseille University, INSERM, Marseille, 13273 France
Received June 25, 2018
Abstract
Development of thalamocortical sensory maps during the “brain spurt” period, which spans through the second half of gestation in human and neonatal period in rodents, is characterized by particular immature patterns, which are thought to be implicated in the activity-dependent formation of the topographic thalamocortical circuits. Here, we discuss how these early activity patterns can support plasticity at the developing thalamocortical synapses and contribute to the refinement of the initially crude protomaps through the competition between sensory inputs for the cortical territories.
Keywords: neonate, somatosensory cortex, electroencephalography, neuronal networks, development
Acknowledgments. This work was supported by INSERM (LIA), the subsidy allocated to Kazan Federal University for the state assignment no. 6.2313.2017/4.6 in the sphere of scientific activities, and performed in the framework of the Program of Competitive Growth of Kazan Federal University.
References
1. Katz L.C., Shatz C.J. Synaptic activity and the construction of cortical circuits. Science, 1996, vol. 274, no. 5290, pp. 1133–1138. doi: 10.1126/science.274.5290.1133.
2. Vitali I., Jabaudon D. Synaptic biology of barrel cortex circuit assembly. Semin. Cell Dev. Biol., 2014, vol. 35, pp. 156–164. doi: 10.1016/j.semcdb.2014.07.009.
3. Erzurumlu R.S., Gaspar P. Development and critical period plasticity of the barrel cortex. Eur. J. Neurosci., 2012, vol. 35, no. 10, pp. 1540–1553. doi: 10.1111/j.1460-
9568.2012.08075.x.
4. Leighton A.H., Lohmann C. The wiring of developing sensory circuits – from patterned spontaneous activity to synaptic plasticity mechanisms. Front. Neural Circuits, 2016, vol. 10, art. 71, pp. 1–13. doi: 10.3389/fncir.2016.00071.
5. Tiriac A., Blumberg M.S. The case of the disappearing spindle burst. Neural Plast., 2016, vol. 2016, art. 8037321, pp. 1–7. doi: 10.1155/2016/8037321.
6. Luhmann H.J., Sinning A., Yang J.W., Reyes-Puerta V., Stuttgen M.C., Kirischuk S., Kilb W. Spontaneous neuronal activity in developing neocortical networks: From single cells to large-scale interactions. Front. Neural Circuits, 2016, vol. 10, art. 40, pp. 1–14. doi: 10.3389/fncir.2016.00040.
7. Lindemann C., Ahlbeck J., Bitzenhofer S.H., Hanganu-Opatz I.L. Spindle activity orchestrates plasticity during development and sleep. Neural Plast., 2016, vol. 2016, pp. 5787423.
8. Yang J.W., Reyes-Puerta V., Kilb W., Luhmann H.J. Spindle bursts in neonatal rat cerebral cortex. Neural Plast., 2016, vol. 2016, art. 3467832, pp. 1–11. doi: 10.1155/2016/3467832.
9. Egorov A.V., Draguhn A. Development of coherent neuronal activity patterns in mammalian cortical networks: Common principles and local hetereogeneity. Mech. Dev., 2013, vol. 130, nos. 6–8, pp. 412–423. doi: 10.1016/j.mod.2012.09.006.
10. Minlebaev M., Ben-Ari Y., Khazipov R. Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J. Neurophysiol., 2007, vol. 97, no. 1, pp. 692–700. doi: 10.1152/jn.00759.2006.
11. Colonnese M., Khazipov R. Spontaneous activity in developing sensory circuits: Implications for resting state fMRI. Neuroimage, 2012, vol. 62, no. 4, pp. 2212–2221. doi: 10.1016/j.neuroimage.2012.02.046.
12. Khazipov R., Minlebaev M., Valeeva G. Early gamma oscillations. Neuroscience, 2013, vol. 250, pp. 240–252. doi: 10.1016/j.neuroscience.2013.07.019.
13. Marshall P.J., Meltzoff A.N. Body maps in the infant brain. Trends Cognit. Sci., 2015, vol. 19, no. 9, pp. 499–505. doi: 10.1016/j.tics.2015.06.012.
14. Cirelli C., Tononi G. Cortical development, electroencephalogram rhythms, and the sleep/wake cycle. Biol. Psychiatry, 2015, vol. 77, no. 12, pp. 1071–1078. doi: 10.1016/j.biopsych.2014.12.017.
15. Khazipov R., Luhmann H.J. Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci., 2006, vol. 29, no. 7, pp. 414–418. doi: 10.1016/j.tins.2006.05.007.
16. Luhmann H.J., Khazipov R. Neuronal activity patterns in the developing barrel cortex. Neuroscience, 2018, vol. 368, pp. 256–267. doi: 10.1016/j.neuroscience.2017.05.025.
17. Blumberg M.S., Sokoloff G., Tiriac A., Del Rio-Bermudez C. A valuable and promising method for recording brain activity in behaving newborn rodents. Dev. Psychobiol., 2015, vol. 57, no. 4, pp. 506–517. doi: 10.1002/dev.21305.
18. Tiriac A., Sokoloff G., Blumberg M.S. Myoclonic twitching and sleep-dependent plasticity in the developing sensorimotor system. Curr. Sleep Med. Rep., 2015, vol. 1, no. 1, pp. 74–79. doi: 10.1007/s40675-015-0009-9.
19. Luhmann H.J. Review of imaging network activities in developing rodent cerebral cortex in vivo. Neurophotonics, 2017, vol. 4, no. 3, art. 031202, pp. 1–8. doi: 10.1117/1.NPh.4.3.031202.
20. Luhmann H.J., Khazipov R. Neuronal activity patterns in the developing barrel cortex. Neuroscience, 2018, vol. 368, pp. 256–267. doi: 10.1016/j.neuroscience.2017.05.025.
21. Lotfullina N., Khazipov R. Ethanol and the developing brain: Inhibition of neuronal activity and neuroapoptosis. Neuroscientist, 2018, vol. 24, no. 2, pp. 130–141. doi: 10.1177/1073858417712667.
22. Petersen C.C.H. The functional organization of the barrel cortex. Neuron, 2007, vol. 56, no. 2, pp. 339–355. doi: 10.1016/j.neuron.2007.09.017.
23. Feldmeyer D., Brecht M., Helmchen F., Petersen C.C.H., Poulet J.F.A., Staiger J.F., Luhmann H.J., Schwarz C. Barrel cortex function. Prog. Neurobiol., 2013, vol. 103, pp. 3–27. doi: 10.1016/j.pneurobio.2012.11.002.
24. OʼLeary D.D.M., Ruff N.L., Dyck R.H. Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr. Opin. Neurobiol., 1994, vol. 4, no. 4, pp. 535–544. doi: 10.1016/0959-4388(94)90054-X.
25. Feldman D.E., Brecht M. Map plasticity in somatosensory cortex. Science, 2005, vol. 310, no. 5749, pp. 810–815. doi: 10.1126/science.1115807.
26. Feldman D.E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci., 2009, vol. 32, pp. 33–55. doi: 10.1146/annurev.neuro.051508.135516.
27. López-Bendito G., Molnár Z. Thalamocortical development: How are we going to get there? Nat. Rev. Neurosci., 2003, vol. 4, no. 4, pp. 276–289. doi: 10.1038/nrn1075.
28. Feldman D.E., Knudsen E.I. Experience-dependent plasticity and the maturation of glutamatergic synapses. Neuron, 1998, vol. 20, no. 6, pp. 1067–1071. doi: 10.1016/s0896-6273(00)80488-2.
29. Isaac J.T.R., Crair M.C., Nicoll R.A., Malenka R.C. Silent synapses during development of thalamocortical inputs. Neuron, 1997, vol. 18, no. 2, pp. 269–280. doi: 10.1016/s0896-6273(00)80267-6.
30. Crair M.C., Malenka R.C. A critical period for long-term potentiation at thalamocortical synapses. Nature, 1995, vol. 375, no. 6529, pp. 325–328. doi: 10.1038/375325a0.
31. An S., Yang J.W., Sun H., Kilb W., Luhmann H.J. Long-term potentiation in the neonatal rat barrel cortex in vivo. J. Neurosci., 2012, vol. 32, no. 28, pp. 9511–9516. doi: 10.1523/JNEUROSCI.1212-12.2012.
32. Yang J.W., Hanganu-Opatz I.L., Sun J.J., Luhmann H.J. Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J. Neurosci., 2009, vol. 29, no. 28, pp. 9011–9025. doi: 10.1523/JNEUROSCI.5646-08.2009.
33. Yang J.W., An S., Sun J.J., Reyes-Puerta V., Kindler J., Berger T., Kilb W., Luhmann H.J. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb. Cortex, 2013, vol. 23, no. 6, pp. 1299–1316. doi: 10.1093/cercor/bhs103.
34. Mitrukhina O., Suchkov D., Khazipov R., Minlebaev M. Imprecise whisker map in the neonatal rat barrel cortex. Cereb. Cortex, 2015, vol. 25, no. 10, pp. 3458–3467. doi: 10.1093/cercor/bhu169.
35. Minlebaev M., Colonnese M., Tsintsadze T., Sirota A., Khazipov R. Early gamma oscillations synchronize developing thalamus and cortex. Science, 2011, vol. 334, no. 6053, pp. 226–229. doi: 10.1126/science.1210574.
36. Akhmetshina D., Nasretdinov A., Zakharov A., Valeeva G., Khazipov R. The nature of the sensory input to the neonatal rat barrel cortex. J. Neurosci., 2016, vol. 36, no. 38, pp. 9922–9932. doi: 10.1523/JNEUROSCI.1781-16.2016.
37. Khazipov R., Sirota A., Leinekugel X., Holmes G.L., Ben Ari Y., Buzsaki G. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 2004, vol. 432, no. 7018, pp. 758–761. doi: 10.1038/nature03132.
38. Hanganu I.L., Ben Ari Y., Khazipov R. Retinal waves trigger spindle bursts in the neonatal rat visual cortex. J. Neurosci., 2006, vol. 26, no. 25, pp. 6728–6736. doi: 10.1523/JNEUROSCI.0752-06.2006.
39. Hanganu I.L., Staiger J.F., Ben-Ari Y., Khazipov R. Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo. J. Neurosci., 2007, vol. 27, no. 21, pp. 5694–5705. doi: 10.1523/JNEUROSCI.5233-06.2007.
40. Colonnese M.T., Khazipov R. “Slow activity transients” in infant rat visual cortex: A spreading synchronous oscillation patterned by retinal waves. J. Neurosci., 2010, vol. 30, no. 12, pp. 4325–4337. doi: 10.1523/JNEUROSCI.4995-09.2010.
41. Colonnese M.T., Kaminska A., Minlebaev M., Milh M., Bloem B., Lescure S., Moriette G., Chiron C., Ben-Ari Y., Khazipov R. A conserved switch in sensory processing prepares developing neocortex for vision. Neuron, 2010, vol. 67, no. 3, pp. 480–498. doi: 10.1016/j.neuron.2010.07.015.
42. Hebb D.O. The Organization of Behaviour. New York, John Wiley and Sons, 1949. 335 p.
43. Debanne D., Gahwiler B.H., Thompson S.M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol., 1998, vol. 507, no. 1, pp. 237–247. doi: 10.1111/j.1469-7793.1998.237bu.x.
44. Suchkov D., Sharipzyanova L., Minlebaev M. Horizontal synchronization of neuronal activity in the barrel cortex of the neonatal rat by spindle-burst oscillations. Front. Cell. Neurosci., 2018, vol. 12, art. 5, pp. 1–12. doi: 10.3389/fncel.2018.00005.
45. Minlebaev M., Ben Ari Y., Khazipov R. NMDA Receptors pattern early activity in the developing barrel cortex in vivo. Cereb. Cortex, 2009, vol. 19, no. 3, pp. 688–696. doi: 10.1093/cercor/bhn115.
46. Khazipov R., Ragozzino D., Bregestovski P. Kinetics and Mg2+ block of N-methyl-Daspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience, 1995, vol. 69, no. 4, pp. 1057–1065. doi: 10.1016/0306-4522(95)00337-I.
47. Daw M.I., Ashby M.C., Isaac J.T. Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex. Nat. Neurosci., 2007, vol. 10, no. 4, pp. 453–461. doi: 10.1038/nn1866.
48. Valiullina F., Akhmetshina D., Nasretdinov A., Mukhtarov M., Valeeva G., Khazipov R., Rozov A. Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex. Front. Neural Circuits, 2016, vol. 10, art. 1, pp. 1–13. doi: 10.3389/fncir.2016.00001.
49. Butts D.A., Kanold P.O. The applicability of spike time dependent plasticity to development. Front. Synaptic Neurosci., 2010, vol. 2, art. 30, pp. 1–9. doi: 10.3389/fnsyn.2010.00030.
50. Bruno R.M., Sakmann B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science, 2006, vol. 312, no. 5780, pp. 1622–1627. doi: 10.1126/science.1124593.
51. Sanes J.R., Lichtman J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci., 1999, vol. 22, pp. 389–442. doi: 10.1146/annurev.neuro.22.1.389.
52. Lichtman J.W., Colman H. Synapse elimination and indelible memory. Neuron, 2000, vol. 25, no. 2, pp. 269–278. doi: 10.1016/S0896-6273(00)80893-4.
53. Chen C., Regehr W.G. Developmental remodeling of the retinogeniculate synapse. Neuron, 2000, vol. 28, no. 3, pp. 955–966. doi: 10.1016/s0896-6273(00)00166-5.
54. Arsenault D., Zhang Z.W. Developmental remodelling of the lemniscal synapse in the ventral basal thalamus of the mouse. J. Physiol., 2006, vol. 573, pt. 1, pp. 121–132. doi: 10.1113/jphysiol.2006.106542.
55. Crocker-Buque A., Brown S.M., Kind P.C., Isaac J.T., Daw M.I. Experience-dependent, layer-specific development of divergent thalamocortical connectivity. Cereb. Cortex, 2015, vol. 25, no. 8, pp. 2255–2266. doi: 10.1093/cercor/bhu031.
56. Lefort S., Tomm C., Floyd Sarria J.C., Petersen C.C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron, 2009, vol. 61, no. 2, pp. 301–316. doi: 10.1016/j.neuron.2008.12.020.
For citation: Nasretdinov A.R., Khazipov R.N. Early activity patterns and thalamocortical synaptic plasticity during the “brain spurt” period. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 4, pp. 677–685.
The content is available under the license Creative Commons Attribution 4.0 License.