L.G. Shaidarova*, Y.A. Leksina**, I.A. Chelnokova***, M.A. Il'ina****, A.V. Gedmina*****, H.C. Budnikov******
Kazan Federal University, Kazan, 420008 Russia
E-mail: *larisashaidarova@mail.ru, **leksina_yulia@mail.ru, ***irina.chelnokova@mail.ru, ****marina_ilina16@mail.ru, *****anna.gedmina@mail.ru, ******Herman.Budnikov@kpfu.ru
Received September 12, 2017
Full text PDF
Abstract
The gold – palladium binary system electrode posited on the surface of screen-printed carbon electrodes exhibits electrocatalytic activity in the oxidation of dopamine and ascorbic acid. The effect is reflected in a decrease of overvoltage and an increase of oxidation current of organic compounds. The possibility of simultaneous voltammetric determination of dopamine and ascorbic acid at dual screen-printed electrode modified by gold – palladium binary system has been established. A method of flow-injection amperometric determination of dopamine and ascorbic acid on this electrode has been introduced. A linear dependence of the response on analytes has been observed in the ranges from 5?10–11 to 5?10–4 M and from 5?10–10 to 5?10–4 M for dopamine and ascorbic acid, respectively.
Keywords: chemically modified electrodes, gold – palladium binary system, dual screen-printed electrode, amperometric determination of dopamine and ascorbic acid, flow-injection analysis
Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.
Figure Captions
Fig. 1. The scheme of flow-injection system: 1 – squeeze pump, 2 – injector, 3– flowing liquid junction cell, 4– biopotentiostat.
Fig. 2. Cyclic voltammetric curves obtained on a screen-printed electrode modified by the Au-Pd binary system in the absence (1) and presence (2) of dopamine (С = 1?10–3 М), background electrolyte – 0.1 М H2SO4 (a); graphs showing the dependence of current parameters on substrate concentration (b) and the value of I√v on √v (c) in dopamine oxidation on chemically modified electrode.
Fig. 3. Cyclic voltammetric curves obtained on a screen-printed electrode with the Au-Pd binary system in the absence (1) and presence of ascorbic acid and dopamine (2) ((С = 1?10–3 М), background electrolyte – 0.1 М H2SO4 (a). The scheme of electrocatalysis on chemically modified electrode (b).
Fig. 4. Analytical response on dual screen-printed electrode under the conditions of flow-injection analysis (a), dependence of the oxidation current of dopamine (1) and ascorbic acid (2) (С = 5?10–3 М) on chemically modified electrode with the Au-Pd electrodeposited binary system on the applied potential (b), and current rate (c) in the flow-injection system, background electrolyte – 0.1 M H2SO4.
References
- Bulatov A.V., Moskvin A.L., Moskvin L.N., Vakh K.S., Falkova M.T., Shishov A.Yu. Automatization and miniaturization of chemical analysis based on the principles of flow methods (Review). Nauchn. Priborostr., 2015, vol. 25, no. 2, pp. 3–26. (In Russian)
- Yashin Ya.A. Amperometric detection in HPLC and flow-injection systems (Review). Zavod. Lab. Diagn. Mater., 2012, vol. 78, no. 2, pp. 4–15. (In Russian)
- Shaidarova L.G., Budnikov G.K. Amperometric sensors with catalytic properties in organic voltammetry. In: Problemy analiticheskoi khimii [Problems of Analytical Chemistry]. Vol. 14: Chemical Sensors. Moscow, Nauka, 2011, pp. 203–284. (In Russian)
- Shaidarova L.G., Budnikov G.K. Amperometric detection of drugs in flow injection analysis. In: Farmatsevticheskii analiz [Pharmaceutical Analysis]. Ser.: Problems of Analytical Chemistry. Мoscow, ANRAMAK-MEDIA, 2013, pp. 580–615. (In Russian)
- Honeychurch K.C. Design and application of liquid chromatography dual electrode detection. In: Banks C., Mortimer R., McIntosh St. (Eds.) Electrochemistry. Vol. 13. R. Soc. Chem., 2015, pp. 1–20. doi: 10.1039/9781782620273-00001.
- Paixão T.R.L.C., Matos R.C., Bertotti M. Design and characterisation of a thin-layered dual-band electrochemical cell. Electrochim. Acta, 2003, vol. 48, nо. 6, pp. 691–698. doi: 10.1016/S0013-4686(02)00738-7.
- Kumar A.S., Shanmugam R., Nellaiappan S., Thangaraj R. Tea quality assessment by analyzing key polyphenolic functional groups using flow injection analysis coupled with a dual electrochemical detector. Sens. Actuators, B, 2016, vol. 227, pp. 352–361.
- Paixão T.R.L.C., Matos R.C., Bertotti M. Development of a dual-band amperometric detector for determination of ascorbic acid and glucose. Electroanalysis, 2003, vol. 15, no. 23, pp. 1884–1889. doi: 10.1002/elan.200302773.
- Fung Y.S., Mo S.Y. Determination of amino-acids and proteins by dual-electrode detection in a flow system. Anal. Chem., 1995, vol. 67, no. 6, pp.1121–1124. doi: 10.102/ac00102a016.
- Gluck M.R., Santana L.A., Granson H., Yahr M.D. Novel dopamine releasing response of an anti-convulsant agent with possible anti-Parkinson's activity. J. Neural Transm., 2004, vol. 111, no. 6, pp. 713–724. doi: 10.1007/s00702-004-0107-1.
- Biswas S., Chakraborty D., Das R., Bandyopadhyay R., Pramanik P. A simple synthesis of nitrogen doped porous graphitic carbon: Electrochemical determination of paracetamol in presence of ascorbic acid and p-aminophenol. Anal. Chim. Acta., 2015, vol. 890, pp. 98–107. doi: 10.1016/j.aca.2015.07.045.
- Amin D. Titrimetric determination of catecholamines and related compounds via bromine oxidation and substitution. Analyst, 1986, vol. 111, no. 2, pp. 255–257.
- Hugles D.E. Titrimetric determination of ascorbic acid with 2,6-dichlorophenol indophenol in commercial liquid diets. J. Pharm. Sci., 1983, vol. 72, nо. 2, pp.126–129. doi: 10.1002/jps.2600720208.
- Sastry C.S., Das V.G., Rao K.E. Spectrophotometric methods for the determination of o-dihydroxybenzene derivatives. Analyst, 1985, vol. 110, nо. 4, pp. 395–398.
- Ruiz B.G., Roux S., Courtois F., Bonazzi C. Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements. Food Chem., 2016, vol. 211, pp. 583–589. doi: 10.1016/j.foodchem.2016.05.107.
- Kukoc-Modun L., Biocic M., Radić N. Indirect method for spectrophotometric determination of ascorbic acid in pharmaceutical preparations with 2,4,6-tripyridyl-s-triazine by flow-injection analysis. Talanta, 2012, vol. 96, pp. 174–179. doi: 10.1016/j.talanta.2011.09.013.
- Wang S., Du L., Wang L., Zhuang H. Flow injection with inhibited chemiluminescence method for the determination of dopamine hydrochloride. Anal. Sci., 2004, vol. 20, nо. 2, pp. 315–317. doi: 10.2116/analsci.20.315.
- Chen H., Wang Q., Shen Q., Liu X., Li W., Nie Z., Yao S. Nitrogen doped graphene quantum dots based long-persistent chemiluminescence system for ascorbic acid imaging. Biosens. Bioelectron., 2017, vol. 91, pp. 878–884. doi: 10.1016/j.bios.2017.01.061.
- Lima J.L.F.C., Montenegro M.C.B.S.M. Dopamine ion-selective electrode or potentiometry in pharmaceutical preparations. Microchim. Acta., 1999, vol. 131, nos. 3–4, pp.187–190. doi: 10.1007/PL00010030.
- Sahin M., Özcan L., Usta B., Sahin Y. Determination of ascorbic acid by polypyrrole potentiometric detector in ion chromatography. Biosens. Bioelectron., 2009, vol. 24, nо. 12, pp. 3492–3497. doi: 10.1016/j.bios.2009.05.005.
- Kim J., Park H., Ryu J., Jeon O., Paeng I.Rh. Competitive enzyme-linked immunosorbent assay for a selective and sensitive determination of dopamine in the presence of ascorbic acid and uric acid. J. Immunoassay Immunochem., 2010, vol. 31, nо. 1, pp. 33–44. doi: 10.1080/15321810903404988.
- Kumarathasan P., Vincent R. New approach to the simultaneous analysis of catecholamines and tyrosines in biological fluids. J. Chromatogr. A, 2003, vol. 987, nos. 1–2, pp. 349–358. doi: 10.1016/S0021-9673(02)01598-4.
- Ragab G. H., Nohta H., Zaitsu K. Chemiluminescence determination of catecholamines in human blood plasma using 1,2-bis(3-chlorophenyl)ethylenediamine as pre-column derivatizing reagent for liquid chromatography. Anal. Chim. Acta, 2000, vol. 403, nos. 1–2, pp. 155–160. doi: 10.1016/S0003-2670(99)00637-6.
- Kand'ar R., Drábková P., Hampl R. The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. J. Chromatogr. B, 2011, vol. 879, nо. 26, pp. 2834–2839. doi: 10.1016/j.jchromb.2011.08.007.
- Zech K. Biogenic amines. In: Henschen A. (Ed.) Vysokoeffektivnaya zhidkostnaya khromatografiya v biokhimii [High Performance Liquid Chromatography in Biochemistry]. Moscow, Мir, 1988, pp. 350–382. (In Russian)
- Shaidarova L.G., Budnikov G.K. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J. Anal. Chem., 2008, vol. 63, no. 10, pp. 922–942. doi: 10.1134/S106193480810002X.
- Venton B. J., Wightman R. M. Psychoanalytical electrochemistry: Dopamine and behavior. Anal. Chem., 2003, vol. 75, no. 19, pp. 414A–421A. doi: 10.1021/ac031421c.
- Matos R.C., Augelli M.A., Lago C.L., Angnes L. Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium. Anal. Chem. Acta, 2000, vol. 404, nо. 1, pp. 151–157. doi: 10.1016/S0003-2670(99)00674-1.
- Liu M.-M., Han Sh.-M., Zheng X.-W., Han L.-L., Liu T., Yu Zh.-Y. Experimental and theoretical prediction of the redox potential of dopamine and its supramolecular complex with glycine. Int. J. Electrochem. Sci., 2015, vol. 10, nо. 1, pp. 235–247.
- Lurie Yu.Yu. Spravochnik po analiticheskoi khimii [Handbook of Analytical Chemistry]. Moscow, Khimia, 1971, 274 p. (In Russian)
- Shaidarova L.G., Chelnokova I.A., Gedmina A.V., Budnikov G.K. Simultaneous voltammetric determination of dopamine and ascorbic acid on electrode modified by gold-palladium binary system. J. Anal. Chem., 2009, vol. 64, no. 1, pp. 36–43. doi: 10.1134/S1061934809010080.
For citation: Shaidarova L.G., Leksina Y.A., Chelnokova I.A., Il'ina M.A., Gedmina A.V., Budnikov H.C. Dual screen-printed electrode modified by gold – palladium binary system for flow-injection amperometric determination of dopamine and ascorbic acid. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 1, pp. 40–53. (In Russian)
![](http://kpfu.ru/docs/F46869432187/img608337246.jpg)
The content is available under the license Creative Commons Attribution 4.0 License.