R.R. Davletshina*, A.N. Ivanov**, G.A. Evtugyn***
Kazan Federal University, Kazan, 420008 Russia
E-mail: *luckydav@mail.ru, **Alexey.Ivanov@kpfu.ru, ***Gennady.Evtugyn@kpfu.ru
Received November 7, 2017
Full text PDF
Abstract
A biosensor based on acetylcholinesterase immobilized by carbodiimide binding on glassy carbon electrode modified with carbon black and Co(II) phthalocyanine has been developed. The working conditions for assembling of the surface layer and measurement protocol have been specified for mediated oxidation of the product formed in the enzymatic hydrolysis of acetylthiocholine. It has been demonstrated that immobilization of the enzyme does not decrease the affinity of the active site to the substrate. The possibility for determination of physostigmine as a model reversible inhibitor in the concentration range from 0.3 nM to 10 μM and the detection limit of 1.8?10–10 M has been established. The kinetic parameters of enzymatic hydrolysis of the substrate and those of competitive inhibition of the enzyme have been calculated. The developed biosensor can find application for the monitoring of anticholinesterase drugs.
Keywords: acetylcholinesterase, enzyme inhibitor, biosensor, determination of reversible inhibition, cobalt(II) phthalocyanine, chemically modified electrode
Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 17-03-00381).
Figure Captions
Fig. 1. Dependence of the inhibition degree on the time of biosensor incubation in physostigmine solution. Physostigmine concentration – 0.01 μM, pH of physostigmine solution – 7.8, AChE concentration on the biosensor surface – 0.0024 AU/mm2.
Fig. 2. Dependence of the inhibition degree on the pH value of physostigmine solution. Physostigmine concentration – 0.1 μM, incubation time – 15 min, AChE concentration on the biosensor surface – 0.0024 AU/mm2.
Fig. 3. Dependence of the inhibition degree and the anode current of thiocholine oxidation on the amount of the enzyme used for AChE immobilization. Physostigmine concentration – 0.1 μM, рН 7.0, incubation time – 15 min, ATC – 5 mM. Mean values and measurement errors for six biosensors are provided.
References
- Arduini F., Amine A., Moscone D., Palleschi G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim. Acta, 2010, vol. 170, nos. 3–4, pp. 193–214. doi: 10.1007/s00604-010-0317-1.
- Domínguez-Renedo O., Alonso-Lomillo M.A., Arcos-Martínez M.J. Determination of metals based on electrochemical biosensors. Crit. Rev. Environ. Sci. Technol., 2013, vol. 43, no. 10, pp. 1042–1073. doi: 10.1080/10934529.2011.627034.
- Gil E.D., de Melo G.R. Electrochemical biosensors in pharmaceutical analysis. Braz. J. Pharm. Sci., 2010, vol. 46, no. 3, pp. 375–391. doi: 10.1590/S1984-82502010000300002.
- Arduini F., Amine A., Moscone D., Palleschi G. Reversible enzyme inhibition-based biosensors: Applications and analytical improvement through diagnostic inhibition. Anal. Lett., 2009, vol. 42, no. 9, pp. 1258–1293. doi: 10.1080/00032710902901913.
- Lenigk R., Lam E., Lai A., Wang H., Han Y., Carlier P., Renneberg R. Enzyme biosensor for studying therapeutics of Alzheimer's disease. Biosens. Bioelectron., 2000, vol. 15, nos. 9–10, pp. 541–547. doi: 10.1016/S0956-5663(00)00078-6.
- Čolović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, vol. 11, no. 3, pp. 315–335. doi: 10.2174/1570159X11311030006.
- Gainullina E.T., Gulikova D.K., Korneev D.O., Oreshkin D.V., Ryzhikov S.B., Fateenkov V.N. Biosensors as tools of environmental monitoring for organophosphorus nerve agents. J. Anal. Chem., 2015, vol. 70, no. 7, pp. 771–780. doi: 10.1134/S1061934815070047.
- Pohanka M. Electrochemical biosensors based on acetylcholinesterase and butyrylcholinesterase. A review. Int. J. Electrochem. Sci., 2016, vol. 11, pp. 7440–7452. doi: 10.20964/2016.09.16.
- Amine A., Arduini F., Moscone D., Palleschi G. Recent advances in biosensors based on enzyme inhibition. Biosens. Bioelectron., 2016, vol. 76, pp. 180–194. doi: 10.1016/j.bios.2015.07.010.
- Pinto T., Lanctôt K.L., Herrmann N. Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer's type. Ageing Res. Rev., 2011, vol. 10, no. 4, pp. 404–412. doi: 10.1016/j.arr.2011.01.003.
- Bentué-Ferrer D., Tribut O., Polard E., Allain H. Clinically significant drug interactions with cholinesterase inhibitors. CNS Drugs, 2003, vol. 17, no. 13, pp. 947–963.
- Munoz-Torrero D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimers disease. Curr. Med. Chem., 2008, vol. 15, no. 24, pp. 2433–2455. doi: 10.2174/092986708785909067.
- Singh M., Kaur M., Kukreja H., Chugh R., Silakari O., Singh D. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem., 2013, vol. 70, pp. 165–188. doi: 10.1016/j.ejmech.2013.09.050.
- Milkani E., Lambert C.R., McGimpsey W.G. Direct detection of acetylcholinesterase inhibitor binding with an enzyme-based surface plasmon resonance sensor. Anal. Biochem., 2011, vol. 408, no. 2, pp. 212–219. doi: 10.1016/j.ab.2010.09.009.
- Stoycheva M., Zlatev R. Bioelectrocatalytical studies of the effect of some pharmaceuticals on the acetylcholinesterase activity. Electroanalysis, 1996, vol. 8, no. 7, pp. 676–679. doi: 10.1002/elan.1140080714.
- Rehák M., Šnejdárková M., Hianik T. Acetylcholine minisensor based on metal-supported lipid bilayers for determination of environmental pollutants. Electroanalysis, 1997, vol. 9, no. 14, pp. 1072–1077. doi: 10.1002/elan.1140091408.
- İpek Y., Dinçer H., Koca A. Selective electrochemical pesticide sensor modified with “click electrochemistry” between cobalt phthalocyanine and 4-azidoaniline. J. Electrochem. Soc., 2014, vol. 161, no. 9, pp. B183–B190. doi: 10.1149/2.0671409jes.
- Jung D.I., Shin Y.J., Lee E.S., Moon T., Yoon C.N., Lee B.H. Acetylcholinesterase (AChE)-catalyzed hydrolysis of long-chain thiocholine esters: Shift to a new chemical mechanism. Bull. Korean Chem. Soc., 2003, vol. 24, pp. 65–69.
- Andreescu S., Barthelmebs L., Marty J.-L. Immobilization of acetylcholinesterase on screen-printed electrodes: Comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal. Chim. Acta, 2002, vol. 464, no. 2, pp. 171–180. doi: 10.1016/S0003-2670(02)00518-4.
- Bucur B., Danet A.F., Marty J.-L. Versatile method of cholinesterase immobilisation via affinity bonds using Concanavalin A applied to the construction of a screen-printed biosensor. Biosens. Bioelectron., 2004, vol. 20, no. 2, pp. 217–225. doi: 10.1016/j.bios.2004.02.024.
- Suprun E., Evtugyn G., Budnikov H., Ricci F., Moscone D., Palleschi G. Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal. Bioanal. Chem., 2005, vol. 383, no. 4, pp. 597–604. doi: 10.1007/s00216-005-0002-0.
- Goldstein A. The mechanism of enzyme-inhibitor-substrate reactions. Illustrated by the cholinesterase-physostigmine-acetylcholine system. J. Gen. Physiol., 1944, vol. 27, no. 6, pp. 529–580.
- Fedosseeva O.V., Uchida H., Katsube T., Ishimaru Y., Iida T. Novel type cholinesterase sensor based on SPV measurement technique. Sens. Actuators, B, 2000, vol. 65, nos. 1–3, pp. 55–57. doi: 10.1016/S0925-4005(99)00437-2.
- Aldridge W.N., Reiner E. Acetylcholinesterase. Two types of inhibition by an organophosphorus compound: One the formation of phosphorylated enzyme and the other analogous to inhibition by substrate. Biochem. J., 1969, vol. 115, no. 2, pp. 147–162.
For citation: Davletshina R.R., Ivanov A.N., Evtugyn G.A. Amperometric acetylcholinesterase biosensor for physostigmine determination. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 1, pp. 5–16. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.