V.N. Paimushin a,b∗, R.A. Kaymov a,c∗∗, V.A. Firsov a∗∗∗, R.K. Gazizullin a∗∗∗∗, S.A. Kholmogorov a∗∗∗∗∗, M.A. Shishov a∗∗∗∗∗∗
a A.N. Tupolev Kazan National Research Technical University, Kazan, 420111 Russia
b Kazan Federal University, Kazan, 420008 Russia
c Kazan State University of Architecture and Engineering, Kazan, 420043 Russia
E-mail: ∗vpajmushin@mail.ru, ∗∗kayumov@rambler.ru, ∗∗∗vafirsov49@mail.ru, ∗∗∗∗gazizullin.rk@yandex.ru, ∗∗∗∗∗ hkazan@yandex.ru, ∗∗∗∗∗∗mashishov@mail.ru
Received January 17, 2019
DOI: 10.26907/2541-7746.2019.1.86-109
For citation: Paimushin V.N., Kaymov R.A., Firsov V.A., Gazizullin R.K., Kholmogorov S.A., Shishov M.A. Tension and compression of flat [±45°]2s specimens from fiber reinforced plastic: Numerical and experimental investigation of forming stresses and strains. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 1, pp. 86–109. doi: 10.26907/2541-7746.2019.1.86-109. (In Russian)
Abstract
Based on the qualitative analysis of the geometric pattern of deformation of flat specimens from cross-ply fibrous composites with the [±45°]2s lay-up when they are under tension and compression and using the physical dependencies compiled earlier for this class of composites, the relationships have been derived that made it possible to determine the components of the strain and stresses in the material orthotropy axes through the axial strain of the specimen measured in the experiment. In the linear formulation of two- and three-dimensional problems, numerical experiments have been carried out to determine the parameters of the stress-strain state of specimens consisting of one and two laminas of unidirectional fibrous plastic with [±45°] and [±45°]2 structures, respectively. The cases of tension of long and compression of short specimens have been considered; the analysis of the forming stress components along the fibers located in the central part and in the vicinity of the corner points of the specimens has been carried out. Experiments on the tension of flat specimens from a fiber composite with a [±45°]2s lay-up to determine the deformed state using a non-contact strain measurement system have been performed. The obtained results allow to indicate areas in which the implementation and continuous change of internal non-classical buckling modes of structural elements of fibrous composites are possible during the loading process, which is probably one of the reasons for the physically nonlinear behavior of specimens with the [±45°]2s lay-up under tension and compression.
Keywords: fiber reinforced plastic, structural elements, fiber, binder, specimen, cross-ply layout, tension, compression
Acknowledgments. The study was performed within the framework of the state assignment of the Ministry of Education of the Russian Federation (projects no. 9.1395.2017/PCh, no. 9.5762.2017/VU (Chapter 1)) and supported by the Russian Science Foundation (project no. 19-19-00059 (Chapters 2, 3)).
References
1. Guz' A.N. Ustoichivost' uprugikh tel pri konechnykh deformatsiyakh [Stability of Elastic Bodies for Finite Deformation]. Kiev, Naukova Dumka, 1973. 270 p. (In Russian)
2. Bolotin V.V. Novichkov Yu.N. Mekhanika mnogosloinykh konstruktsii [Mechanics of Multilayer Structures]. Moscow, Mashinostroenie, 1980. 375 p. (In Russian)
3. Agarwal B.D., Broutman L.J. Analysis and Performance of Fiber Composites. New York, John Wiley & Sons, 1980. 355 p.
4. Broutman L.J., Agarwal B.D. Effect of the interface on the mechanical properties of composite materials. Rheol. Acta, 1974, vol. 13, no. 3, pp. 618–626. doi: 10.1007/BF01521765.
5. Allen H.G. Analysis and Design of Structural Sandwich Panels. London, Pergamon Press, 1969. 284 p.
6. Harris B.J. Crisman W.C. Face-wrinkling mode of buckling of sandwich panels. ASCE J. Eng. Mech. Div., 1965, vol. 91, pp. 93–111.
7. Hashin Z. Failure criteria for unidirectional fibre composites. J. Appl. Mech., 1980, vol. 47, no. 2, pp. 329–334. doi: 10.1115/1.3153664.
8. Hashin Z., Rotem A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater., 1973, vol. 7, no. 4, pp. 448–464. doi: 10.1177/002199837300700404.
9. Xu Y.L., Reifsnider K.L. Micromechanical modeling of composite compressive strength. J. Compos. Mater., 1993, vol. 27, no. 6, pp. 572–588. doi: 10.1177/002199839302700602.
10. Badriev I.B., Makarov M.V., Paimushin V.N., Kholmogorov S.A. The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 4, pp. 395–428. (In Russian)
11. Badriev I.B., Paimushin V.N. Mathematical modeling of a dynamic thin plate deformation in acoustoelasticity problems. IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 107, art. 012095, pp. 1–9. doi: 10.1088/1755-1315/107/1/012095.
12. Paimushin V.N., Kholmogorov S.A., Gazizullin R.K. Mechanics of unidirectional fiber-reinforced composites: Buckling modes and failure under compression along fibers. Mech. Compos. Mater., 2017, vol. 53, no. 6, pp. 737–752. doi: 10.1007/s11029-018-9699-7.
13. Paimushin V.N., Shalashilin V.I. The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures. J. Appl. Math. Mech., 2005, vol. 69, no. 5, pp. 773–791. doi: 10.1016/j.jappmathmech.2005.09.013.
14. Paimushin V.N., Shalashilin V.I. Consistent variant of continuum deformation theory in the quadratic approximation. Dokl. Phys., 2004, vol. 49, no. 6, pp. 374–377. doi: 10.1134/1.1774064.
15. Paimushin V.N., Kholmogorov S.A., Makarov M.V., Tarlakovskii D.V., Lukaszewicz A. Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests. Z. Angew. Math. Mech., 2019, vol. 99, no. 1, art. e201800063, pp. 1–25. doi: 10.1002/zamm.201800063.
16. Paimushin V.N., Kholmogorov S.A. Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder. Mech. Compos. Mater., 2018, vol. 54, no. 1, pp. 2–12. doi: 10.1007/s11029-018-9712-1.
17. Rosen B.W. Mechanics of composite strengthening. Fibre Composite Materials: Am. Soc. Metals Seminar. Am. Soc. Metals, 1965, pp. 37–75.
18. Budiansky B., Fleck N.A. Compressive failure of fibre composites. J. Mech. Phys. Solids, 1993, vol. 41, no. 1, pp. 183–211. doi: 10.1016/0022-5096(93)90068-Q.
19. Zhang G., Latour R.A. Jr. FRP composite compressive strength and its dependence upon interfacial bond strength, fiber misalignment, and matrix nonlinearity. J. Thermoplast. Compos. Mater., 1993, vol. 6, no. 4, pp. 298–311. doi: 10.1177/089270579300600403.
20. Zhang G., Latour R.A. Jr. An analytical and numerical study of fiber microbuckling. Compos. Sci. Technol., 1994, vol. 51, no. 1, pp. 95–109. doi: 10.1016/0266-3538(94)90160-0.
21. Naik N.K., Kumar R.S. Compressive strength of unidirectional composites: Evaluation and comparison of prediction models. Compos. Struct., 1999, vol. 46, no. 3, pp. 299–308. doi: 10.1016/S0263-8223(99)00098-7.
22. Jumahat A., Soutis C., Jones F.R., Hodzic A. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading. Compos. Struct., 2010, vol. 92, no. 2, pp. 295–305. doi: 10.1016/j.compstruct.2009.08.010.
23. Paimushin V.N., Polyakova N.V., Kholmogorov S.A., Shishov M.A. Buckling modes of structural elements of off-axis fiber-reinforced plastics. Mech. Compos. Mater., 2018, vol. 54, no. 2, pp. 133–144. doi: 10.1007/s11029-018-9726-8.
24. Paimushin V.N., Polyakova N.V., Kholmogorov S.A., Shishov M.S. Non-uniformly scaled buckling modes of reinforcing elements in fiber reinforced plastic. Russ. Math., 2017, vol. 61, no. 9, pp. 79–84. doi: 10.3103/S1066369X17090092.
25. Giannadakis K., Varna J. Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite. Composites, Part A, 2014, vol. 62, pp. 67–76. doi: 10.1016/j.compositesa.2014.03.009.
26. Paimushin V.N., Kholmogorov S.A., Kayumov R.A. Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 4, pp. 395–428. (In Russian)
27. Paimushin V.N., Kayumov R.A., Kholmogorov S.A., Shishkin V.M. Defining relations in mechanics of cross-ply fiber reinforced plastics under short-term and long-term monoaxial load. Russ. Math., 2018, vol. 62, no. 6, pp. 75–79. doi: 10.3103/S1066369X18060087.
28. ASTM-D3518/D3518M-94. Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ?45є Laminate. West Conshohocken, PA, ASTM, 1994. 7 p.
29. State Standard 32658–2014. Polymer composites. Determination of mechanical properties in the plane of shear reinforcement by a tensile test at an angle of ?45 degree. Moscow, Standartinform, 2014. 15 p. (In Russian).
30. Rosen B.W. A simple procedure for experimental determination of the longitudinal shear modulus of unidirectional composites. J. Compos. Mater., 1972, vol. 6, no. 3, pp. 552–554. doi: 10.1177/002199837200600310.
The content is available under the license Creative Commons Attribution 4.0 License.