D.R. Khusnutdinovaa*, M.I. Markelovaa**, E.A. Boulyginaa, M.N. Siniaginaa, S.Yu. Malanina, T.V. Grigoryevaa, R.K. Ismagilovaa, D.D. Safinaa, S.R. Abdulkhakova, R.A. Abdulkhakovb, V.M. Chernova,c, O.A. Chernovaa,c
aKazan Federal University, Kazan, 420008 Russia
bKazan State Medical University, Kazan, 420012 Russia
cKazan Institute of Biochemistry and Biophysics, Kazan Scientific Center,
Russian Academy of Sciences, Kazan, 420111 Russia
E-mail: *dilyahusn@gmail.com, **mimarkelova@gmail.com
Received February 14, 2017
Full text PDF
Abstract
A total of 152 stool samples from 76 patients with symptoms of gastrointestinal diseases have been analyzed using metagenomic shotgun sequencing technology to assess the effect of Helicobacter pylori eradication therapy on Bifidobacterium, Lactobacillus, Escherichia, and Clostridium genera. The relative abundance of bacteria representing these genera in the intestinal microflora of patients before and after antibiotic therapy has been evaluated. It has been shown that the therapy did not have any critical effect in the majority of cases on the number of Lactobacillus, Escherichia and Clostridium genera in the microbial community. Their abundance varied within 0.5% in 76.5%, 51.3%, and 55.2% of patients, respectively. The Bifidobacterium genus has been found to be more susceptible to antibiotics (their number decreased significantly in 60.5% of cases). However, 9.2% of patients have shown the opposite effect. Thus, the obtained data demonstrate that Helicobacter pylori eradication therapy does not have uniform effects on the key members of human intestinal microbiota. This fact should be taken into account when predicting the risks of side effects of antibiotics.
Keywords: human intestinal microbiome, Helicobacter pylori, eradication therapy, antibiotics, shotgun sequencing, metagenome analysis
Acknowledgments. The study was supported by the Ministry of Education and Science of the Russian Federation as part of the federal target program “Investigations and developments on priority areas of scientific-technological complex of Russia for 2014–2020” (Agreement no. 14.575.21.0076 of August 22, 2014, ID RFMEFI575I4X0076).
Figure Captions
Fig. 1. The distribution of 15 bacterial genera dominating in the intestinal metagenome of the control group, %.
Fig. 2. The distribution of 15 bacterial genera dominating in the intestinal metagenome of patients before H. pylori eradication therapy, %.
Fig. 3. The distribution of 15 bacterial genera dominating in the intestinal metagenome of patients after H. pylori eradication therapy, %.
Fig. 4. Changes in the number of Bifidobacterium, Lactobacillus, Escherichia, and Clostridium in the intestinal microbiome of patients after antibiotic therapy.
Fig. 5. The main variants of changes in the relative abundance of Bifidobacterium, Lactobacillus, Escherichia, and Clostridium in the intestinal microbiome of patients after antibiotic therapy in the descending order of percentage of cases.
References
- Bäckhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science, 2005, vol. 307, no. 5717, pp. 1915–1920. doi: 10.1126/science.1104816.
- Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol., 2009, vol. 9, no. 5, pp. 313–323. doi: 10.1038/nri2515.
- Guarner F. Enteric flora in health and disease. Digestion, 2006, vol. 73, suppl. 1, pp. 5–12.
- Dicksved J., Flöistrup H., Bergström A., Rosenquist M., Pershagen G., Scheynius A., Roos S., Alm J.S., Engstrand L., Braun-Fahrländer Ch., Mutius E., Jansson J. K. Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl. Environ. Microbiol., 2007, vol. 73, no. 7, pp. 2284–2289. doi: 10.1128/AEM.02223-06.
- Zoetendal E.G., Akkermans A.D.L., De Vos W.M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol., 1998, vol. 64, no. 10, pp. 3854–3859.
- Eckburg P.B., Bik E.M., Bernstein Ch.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. Diversity of the human intestinal microbial flora. Science, 2005, vol. 308, no. 5728, pp. 1635–1638. doi: 10.1126/science.1110591.
- Brugère J.-F., Mihajlovski A., Missaoui M., Peyret P. Tools for stools: The challenge of assessing human intestinal microbiota using molecular diagnostics. Expert Rev. Mol. Diagn., 2009, vol. 9, no. 4, pp. 353–365. doi: 10.1586/erm.09.16.
- Malfertheiner P., Megraud F., O'Morain C.A., Gisbert J.P., Kuipers E.J., Axon A.T., Bazzoli F., Gasbarrini A., Atherton J., Graham D.Y., Hunt R., Moayyedi P., Rokkas T., Rugge M., Selgrad M., Suerbaum S., Sugano K., El-Omar E.M. Management of Helicobacter pylori infection – the Maastricht V / Florence consensus report. Gut, 2016. doi: 10.1136/gutjnl-2016-312288.
- Ivashkin V.T., Maev I.V., Lapina T.L., Sheptulin A.A. Guidelines of the Russian Gastroenterological Association on diagnostics and treatment of Helicobacter pylori infection in adults. Ross. Zh. Gastroenterol., Gepatol. Kolopraktol., 2012, vol. 22, no. 1, pp. 87–89. (In Russian)
- Segata N., Waldron L., Ballarini A., Narasimhan V., Jousson O., Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods, 2012, vol. 9, no. 8, pp. 811–814. doi: 10.1038/nmeth.2066.
- Li J., Jia H., Cai X., Zhong H., Feng Q., Sunagawa S., Arumugam M., Kultima J.R., Prifti E., Nielsen T., Juncker A.S., Manichanh C., Chen B., Zhang W., Levenez F., Wang J., Xu X., Xiao L., Liang S., Zhang D., Zhang Z., Chen W., Zhao H., Al-Aama J. Y., Edris S., Yang H., Wang J., Hansen T., Nielsen H.B., Brunak S., Kristiansen K., Guarner F., Pedersen O., Doré J., Ehrlich S.D., MetaHIT Consortium, Bork P., Wang J. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol., 2014, vol. 32, no. 8, pp. 834–841. doi: 10.1038/nbt.2942.
- Arumugam M., Raes J., Pelletier E., Paslier D.L., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.-M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H.B., Nielsen T. et al. Enterotypes of the human gut microbiome. Nature, 2011, vol. 473, no. 7346, pp. 174–180. doi: 10.1038/nature09944.
- Knights D., Ward T.L., McKinlay Ch.E., Miller H., Gonzalez A., McDonald D., Knight R. Rethinking “Enterotypes”. Cell Host Microbe, 2014, vol. 16, no. 4, pp. 433–437. doi: 10.1016/j.chom.2014.09.013.
- Khusnutdinova D., Grigoryeva T., Abdulkhakov S., Safina D., Siniagina M., Markelova M., Boulygina E., Malanin S., Tyakht A., Kovarsky B., Ismagilova R., Abdulkhakov R., Chernov V. Gut microbiome shotgun sequencing in assessment of microbial community changes associated with H. pylori eradication therapy. BioNanoScience, 2016, vol. 6, no. 4, pp. 585–587. doi: 10.1007/s12668-016-0285-y.
- Safina D.D., Abdulkhakov S.R., Grigoryeva T.V., Markelova M.I., Ismagilova R.K., Khusnutdinova D.R., Malanin S.Yu., Laikov A.V., Siniagina M.N., Abdulkhakov R.A., Chernov V.M. Pharmacotherapy effect on genetic diversity of intestinal biocenosis. Geny Kletki, 2015, vol. 10, no. 4. pp. 80–85. (In Russian)
- Ardatskaya M.D., Bel'mer S.V., Dobritsa V.P., Zakharenko S.M., Lazebnik L.B., Minushkin O.N., Oreshko L.S., Sitkin S.I., Tkachenko E.I., Suvorov A.N., Khavkin A.I., Shenderov B.A. Colon dysbacteriosis (dysbiosis): Modern state of the problem, comprehensive diagnosis and treatment correction. Eksp. Klin. Gastroenterol., 2015, vol. 5, no. 117, pp. 13–50. (In Russian)
- Schell M.A., Karmirantzou M., Snel B., Vilanova D., Berger B., Pessi G., Zwahlen M.-C., Desiere F., Bork P., Delley M., Pridmore R.D., Arigoni F. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 22, pp. 14422–14427. doi: 10.1073/pnas.212527599.
- Sandine W.E., Muralidhara K.S., Elliker P.R., England D.C. Lactic acid bacteria in food and health: A review with special reference to enteropathogenic Escherichia coli as well as certain enteric diseases and their treatment with antibiotics and lactobacilli. J. Milk Food Technol., 1972, vol. 35, pp. 691–702. doi: 10.4315/0022-2747-35.12.691.
- Goldin B.R., Gorbach S.L. Alterations in fecal microflora enzymes related to diet, age, lactobacillus supplements, and dimethylhydrazine. Cancer, 1977, vol. 40, pp. 2421–2426.
- Clarke S.C., Haigh R.D., Freestone P.P.E., Williams P.H. Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin. Microbiol. Rev., 2003, vol. 16, no. 3, pp. 365–378.
- Bartlett J.G., Chang T.E.W., Gurwith M., Gorbach Sh.L., Onderdonk A.B. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N. Engl. J. Med., 1978, vol. 298, no. 10, pp. 531–534.
- Adamsson I., Nord C.E., Lundquist P., Sjöstedt S., Edlund C. Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J. Antimicrob. Chemother., 1999, vol. 44, no. 5, pp. 629–640.
- Brismar B., Edlund C., Nord C.E. Comparative effects of clarithromycin and erythromycin on the normal intestinal microflora. Scand. J. Infect. Dis., 1991, vol. 23, no. 5, pp. 635–642.
- Edlund Ch., Beyer G., Hiemer-Bau M., Ziege S., Lode H., Nord C.E. Comparative effects of moxifloxacin and clarithromycin on the normal intestinal microflora. Scand. J. Infect. Dis., 2000, vol. 32, no. 1, pp. 81–85.
- Bartlett J.G., Chang T.E.W., Gurwith M., Gorbach Sh.L., Onderdonk A.B. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N. Engl. J. Med., 1978, vol. 298, no. 10, pp. 531–534.
For citation: Khusnutdinova D.R., Markelova M.I., Boulygina E.A., Siniagina M.N., Malanin S.Yu., Grigoryeva T.V., Ismagilova R.K., Safina D.D., Abdulkhakova S.R., Abdulkhakov R.A., Chernov V.M., Chernova O.A. The effect of Helicobacter pylori eradication on human microbiota: Metagenome analysis of the human gut microbiome. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 2, pp. 217–231. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.